Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 261 (1983), S. 825-833 
    ISSN: 1435-1536
    Keywords: Polymers ; Slow-brittle-fracture ; Toughness ; Caustics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A slow crack growth was achieved in initially edge-cracked specimens made of a high-molecular weight PMMA by regulating the cross-head speed of loading by a computer-driven testing machine. The strain rate $$\dot \varepsilon $$ used during the tests varied between $$\dot \varepsilon $$ =1× l0−6 s−1 and 1×10−4 s−1. It was shown that, in this zone of slow quasi-static loading of brittle polymethylmethacrylate specimens under conditions of plane stress, the crack initiated for a critical value of loading, at some characteristic zone of strain-rate variation at the crack tip. It was established that for strain rate between $$\dot \varepsilon $$ =0.18×10−5 s−1 and $$\dot \varepsilon $$ =0.45×10−4 s−1 brittle cracks were propagating always slowly with velocities in the range ofc=3 to 5×10−2 m/s. For values ofv s outside this transition zone fracture was typically brittle with high crack-propagation velocities. As the strain rate was varying beyond the stable low-velocity region, a two-step crack velocity pattern was operative, where the one step took always low values, and the other step corresponded to crack-propagation velocities significantly higher than these limits, tending to typical brittle-fracture velocities of the material. Oscillations of the velocityc at the transition zones, or, in many cases all over the zone of slow propagation of the crack, indicated the unstable character of crack propagation, influenced by different stress raisers and especially by the opposite longitudinal boundary of the specimen. Stress intensity factor values during crack propagation, evaluated from the front (cuspoid) and the rear (external) caustic, which remained alwaysk g-dominant, were following similar trends as the variation of the crack propagation velocity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 27 (1982), S. 3019-3025 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The thermomechanical behavior of particle composites was investigated in their transition region. In particular, the value of the glass-transition temperature Tg, which constitutes an upper limit for the structurally important glassy region, was examined. According to experimental evidence existing in the literature the introduction of a reinforcing filler in a polymeric matrix causes Tg of the latter to increase, unless mechanical imperfections counterbalance the reinforcing effect or even produce a Tg for the composite which is lower than that of the matrix. Based on mechanical theories, valid for the mechanical moduli of viscoelastic particle composites, a model was introduced that explains why the glass transition of composite materials may be reduced in some cases, whereas it may be increased in others. The concept of interphase between inclusions and matrix was used for the development of the model. Interphase is assumed to be a region, which is created between the matrix material and the filler particles, both considered as homogeneous and isotropic, whose thermomechanical properties and volume fraction may be determined from the overall thermomechanical behavior of the composite.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 28 (1983), S. 3641-3649 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Retardation spectra, derived from dynamic measurements of extension compliances along three decades on the logarithmic scale of frequencies in standard specimens prepared from a fiber-reinforced composite with their fibers parallel to the longitudinal axis of the specimens, have revealed the structure of the matrix material of the composite. The experimental results were used to prove that the physicochemical rearrangements in the vicinity of the inclusions, consisting of restrained development of the macromolecules and especially their side chains due to the presence of the other phase, concentration of voids and dirt, shrinkage stresses developed during curing and creating microcracks (radial as well as along the interface), are activated by the existence of high stress gradients and eventually stress singularities due to the strong adhesion developed between phases.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 28 (1983), S. 3145-3153 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The influence of moisture absorption on the extent of the boundary interphase in particulate composites is thoroughly studied. It was found that, during the process of moisture absorption there is a variation of the extent of the boundary interphase, closely related to the degradation of the mechanical behavior of the composite, as well as to the percentage amount of moisture absorbed. An explanation of the observed relationship was advanced, based on a theoretical mechanism of absorption. This study complements a previous one, where the observed degradation of the thermomechanical properties of particulate composites due to moisture absorption was shown to be intimately interrelated with the state and extent of the interphase between fillers and matrix.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 2997-3011 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The static and dynamic elastic moduli of particulate composites, consisting of two phases, one of which has isotropic-elastic and the other linear viscoelastic properties, were studied. For this purpose a model defining the approximate equations for determining the elastic modulus of a composite from the properties of the constituent materials was used. Classical theory of elasticity was applied to this simplified model of a composite-unit cell. The following assumptions are made: (i) filler particles are spherical; (ii) fillers are completely dispersed; and (iii) the volume fraction of fillers is sufficiently small, so that any interaction among fillers may be neglected. A class of iron-filled epoxy composites was subjected to tests in order to compare the theoretical values with the experimental results. The elastic modulus calculated by the expression derived in this study seems to corroborate with the experimental results fairly well. Finally, by applying the correspondence principle to this expression, theoretical relationships for the dynamic storage and loss moduli were also derived.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...