Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 273 (1995), S. 307-316 
    ISSN: 1435-1536
    Keywords: Composite material ; filler size and aspect ratio ; filler volume fraction ; filler-matrix adhesion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The static elastic moduli of particulate-filled epoxy resins, consisting of two phases, one of which has isotropic-elastic and the other linear viscoelastic properties, were studied. The effects of parameters such as the filler volume fraction, the filler size and aspect ratio, and the filler distribution were evaluated. For this purpose, in the theoretical part a development of a simplified model based on mechanics of materials approach was used. In the experimental part a class of iron-filled epoxy composites with various filler content, filler size, and filler distribution was subjected to tests in order to obtain the elastic modulus. The experimental results were compared with the theoretical values derived from the developed model as well as with theoretical values obtained from other investigators.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 25 (1986), S. 350-358 
    ISSN: 1435-1528
    Keywords: Composite ; elastic modulus ; mesophase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract A theoretical model for the evaluation of the elastic modulus in particulate composites has been developed. The method takes into account the existence of a mesophase between main phases, which constitutes an important parameter influencing the behaviour of a composite material. This layer between the matrix and filler develops different physico-chemical properties from those of the constituent phases and variable ones along its thickness. The effect of the progressive variation of the elastic modulus of the mesophase on the modulus of the composite was estimated by applying various simple laws of variation. Convenient laws of variation were introduced, varying from a simple one, assuming a linear law, to a more refined one using a parabolic law. Experimental results with particulates, based on iron-filled epoxy composites, compared satisfactorily with other models. However, the model based on a parabolic law was superior to all others on physical grounds.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 66 (1995), S. 111-125 
    ISSN: 1432-0681
    Keywords: Key words unidirectional composite ; orthotropy ; fibre/matrix interphase ; crack initiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  In this paper, a survey on the orthotropic composite materials is given. The model of the interphase, assuming a third phase between fibre and matrix with some different properties, is used for the calculation of the elastic constants of a unidirectional fibre-reinforced epoxy resin composite. Their values are used to determine the stress field at the crack tip and the stress intensity factor of a cracked orthotropic plate. The recently developed Det-criterion of fracture is taken into account to study the crack initiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 66 (1995), S. 111-125 
    ISSN: 1432-0681
    Keywords: unidirectional composite ; orthotropy ; fibre/matrix interphase ; crack initiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary In this paper, a survey on the orthotropic composite materials is given. The model of the interphase, assuming a third phase between fibre and matrix with some different properties, is used for the calculation of the elastic constants of a unidirectional fibre-reinforced epoxy resin composite. Their values are used to determine the stress field at the crack tip and the stress intensity factor of a cracked orthotropic plate. The recently developed Det-criterion of fracture is taken into account to study the crack initiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 27 (1988), S. 608-616 
    ISSN: 1435-1528
    Keywords: Thermalexpansion ; adhesion efficiency ; particulatecomposite ; aluminiumepoxycomposite ; Differential ScanningCalorimetry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The thermal expansion coefficient of particle-reinforced polymers was evaluated using a theoretical model which takes into account the adhesion efficiency between the inclusions and the matrix — an important factor affecting the thermomechanical properties of a composite. To measure the adhesion efficiency a boundary interphase, i.e. a layer between the matrix and the fillers having a structure and properties different from those of the constituent phases, was considered. This layer is assumed to have varying properties. To obtain information concerning the properties and extent of the interphase, an experimental study of the thermal behaviour of aluminium-epoxy composites was undertaken. Differential Scanning Calorimetry (DSC) measurements were performed to evaluate heat capacity with respect to temperature. In addition, the effects of different factors, such as heating rate and filler concentration on the glass transition temperature of the composite, were examined. The sudden changes in heat capacity values in the glass transition region were used to estimate the extent of the boundary interphase according to an existing theory. Finally, the values of the thermal expansion coefficient, predicted by this model, were compared with theoretical results obtained by other authors and with experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Brookfield, Conn. : Wiley-Blackwell
    Polymer Composites 7 (1986), S. 1-8 
    ISSN: 0272-8397
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The dynamic mechanical properties of composite materials, consisting of an epoxy matrix filled with iron particles, were determined over a temperature range. The storage- and loss moduli were evaluated in a Dynastat apparatus, with the parameters being the volume fraction of filler and the test frequency. A theoretical model was developed for comparing the experimental results with the theoretical predictions. A satisfactory correlation was obtained for the glassy region of the composite.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 2997-3011 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The static and dynamic elastic moduli of particulate composites, consisting of two phases, one of which has isotropic-elastic and the other linear viscoelastic properties, were studied. For this purpose a model defining the approximate equations for determining the elastic modulus of a composite from the properties of the constituent materials was used. Classical theory of elasticity was applied to this simplified model of a composite-unit cell. The following assumptions are made: (i) filler particles are spherical; (ii) fillers are completely dispersed; and (iii) the volume fraction of fillers is sufficiently small, so that any interaction among fillers may be neglected. A class of iron-filled epoxy composites was subjected to tests in order to compare the theoretical values with the experimental results. The elastic modulus calculated by the expression derived in this study seems to corroborate with the experimental results fairly well. Finally, by applying the correspondence principle to this expression, theoretical relationships for the dynamic storage and loss moduli were also derived.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 48 (1993), S. 243-255 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A theoretical expression for the prediction of the transverse elastic modulus in fiber-reinforced composites was developed. The concept of interphase between fibers and matrix was used for the development of the model. This model considers that the composite material consists of three phases, that is, the fiber, the matrix, and the interphase. The latter is the part of the polymer matrix lying at the close vicinity of the fiber surface. In the present investigation it was assumed that the interphase is inhomogeneous in nature with continuously varying mechanical properties. Different laws of variation of its elastic modulus and Poisson ratio were taken into account in order to define the overall modulus of the composite. Thermal analysis method was used for the estimation of the thickness of the interphase. The results obtained were compared with the respective values of other models as well as with experimental data. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 55 (1995), S. 1367-1373 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In this article an experimental study to determine the longitudinal (or in-plane) shearing stress-strain response of a unidirectional fiber-reinforced composite material is presented. The test method used is the four-point blending of a ±45° off-axis glass-fiber-reinforced laminate. Although a laminate is used for the investigation of the shearing stress-strain response, it is shown that unidirectional shear properties can be found from the laminate test data following a procedure analogous to that used in previously. Also, the 45° off-axis test of unidirectional composite in bending was carried out to obtain the in-plane shear modulus and compare it with that obtained by the ±45° off-axis method. Finally both values were compared with the theoretical value of the in-plane shear modulus obtained from a theoretical formula where the concept of boundary interphase between fiber and matrix was introduced. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...