Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (5)
  • 1965-1969  (3)
  • 1950-1954  (6)
  • 1940-1944  (3)
Material
Years
Year
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 1 (1967), S. 205-230 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Zusammenfassung Diffusion tritt in einem porigen quellfähigen Material, wie z. B. Holz, auf, und zwar je nach Art des unterschiedlichen Materialgefüges mit drei verschiedenen Gradienten-Typen. Diffusion eines gelösten Stoffes kann aufgrund eines Konzentrationsgefälles durch die mikroskopisch sichtbaren, mit Lösung gefüllten Hohlräume des Gefüges hindrurch stattfinden, ohne Rücksicht darauf, ob die Lösung das Holz zum Quellen bringt. Bringt sie das Holz zum Quellen, so kann eine zusätzliche Diffusion durch den bis dahin gebundenen Teil der Flüssigkeit stattfinden. Die Diffusion nichtquellender Gase und Dämpfe ist auf die mikroskopisch sichtbaren Hohlräume beschränkt. Sie entsteht durch das Dampfdruckgefälle. Gebundene, quellende Flüssigkeiten können durch Zellwände diffundieren, wenn ein Gefälle gegen die gebundene Flüssigkeit entsteht. Ebenso besteht die Möglichkeit, daß eine kontinuierliche Dampfdiffusion durch die grobe Kapillarstruktur hindurch gleichzeitig mit einer kontinuierlichen Diffusion des gebundenen Flüssigkeitsanteils durch die Zellwand hindurch stattfindet. Beide Erscheinungen können auch in hintereinander folgender Kombination auftreten. Dies setz die Kondensation des Dampfes an der Zellwand nach Durchströmen eines Hohlraumes aufgrund eines Druckgefälles voraus, gefolgt vom Durchtritt durch die Zellwand aufgrund des Gefälles gegen den gebundenen Flüssigkeitsanteil und anschließende neuerliche Verdampfung in den nächsten Hohlraum hinein. Diese komplexen Kombinationen von Diffusionswegen bei jeweils unterschiedlichen Gefällebedingungen wurden analysiert unter der Annahme einer Analogie zwischen Diffusion und elektrischer Leitfähigkeit, wobei parallelgeschaltete Leitfähigkeiten als additiv und reziproke Leitfähigkeiten, d. h. Widerstände, hintereinandergeschaltet als ebenfalls additiv gelten. Es ist auf diese Weise möglich, Querschnitte und Längen der verschiedenen Diffusionswege zusammen mit gesondert bestimmten Diffusionskoeffizienten auf einfachere Systeme in Parallel-oder Serienanordnung zu übertragen, um dadurch theoretisch ermittelte, kombinierte, effektive Diffusionskoeffizienten zu erhalten. Bei der Diffusion durch Holz können entweder alle der sechs in Gl. (16) aufgeführten Konstanten oder nur ein Teil von ihnen beteiligt sein. Inden Fällen, bei denen ein gelöster Stoff durch Holz diffundiert, das mit einem quellenden Lösungsmittel gesättigt ist, sind alle Konstanten beteiligt. Die Auflösung der Gleichung für die Diffusion in Faserrichtung zeigt aber, daß der anteilige Querschnitt des Faserhohlraumes nahezu vollständig die Diffusionsgesch windigkeit bestimmt, wogegen bei der Diffusion in den Querrichtungen die Geschwindigkeit weitgehend durch die verbindenden Gefügeteile in dieser Richtung geregelt wird. Diese Erwägungen stehen in Übereinstimmung mit experimentellen Diffusions- und elektrischen Leitfähigkeits-messungen, aus denen sich Diffusionskoeffizienten errechnen lassen, die jenen entsprechen, die für die Diffusion eines gelösten Stoffes im reinen Lösungsmittel zutreffen, was dem anteiligen Querschnitt eines Faserhohlraumes, korrigiert hinsichtlich der spitz zulaufenden Faserenden, gleichzusetzen ist. Die experimentell ermittelten Diffusionskoeffizienten, entsprechend jenen für das reine Lösungsmittel und für Querdiffusion, bewegten sich zwischen 0,01 und 0,06, die elektrischen Leitfähigkeitszahlen liegen im Vergleich dazu zwischen 0,02 und 0,033; schließlich ergibt sich ein theoretischer Wert von 0,0445 für einen vergleichbaren Dichtebereich. Die entsprechenden Diffusionskoeffizienten für die Diffusion eines gelösten Stoffes durch Holz, das mit einem nichtquellenden Lösungsmittel gesättigt ist, liegen niedriger, weil die Konstanten C a , C e und C c in Gl.(6) Null werden. Sie entfallen ebenso bei der Diffusion von Gasen und nichtquellenden Dämpfen durch Holz. Wird die gesamte Diffusion als freie Dampfdiffusion betrachtet, so erreichen die theoretischen Werte etwa das 30fache der experimentell ermittelten Werte für die Querdiffusion von Kohlendioxyd, allerdings nur das zweifache der experimentellen Werte für die Längsdiffusion. Sofern man sich entschließt, die eben erwähnten Unterschiede gänzlich auf die durch die Tüpfelmembranöffnungen behinderte Diffusion zurückzuführen, so erhält man Koeffizienten der behinderten Diffusion, die 1/40 und 1/30 der freien Diffusion betragen. Dies ist der Tatsache zuzuschreiben, daß viele der in Rechnung gestellten Öffnungen kleiner sind als der angenommene mittlere Durchtrittsquerschnitt. Messungen zur Diffusion des gebundenen Wassers in die Holzsubstanz wurden in der Weise durchgeführt, daß man die Hohlräume des Holzes mit einem leicht schmelzenden Metall füllte, das sich bei der Verfestigung nur sehr wenig ausdehnt. Die erhaltenen Werte schwanken nur wenig zwischen den einzelnen Holzarten und erweisen sich als unabhängig von der Dichte des Holzes, da die E-Werte der Gl. (14) die Dichte in Rechnung stellen. Die Diffusionswerte in Faserrichtung betragen etwa das zweifache jener in Radialrichtung und das dreifache jener in Tagentialrichtung. Die Diffusionskeoffizienten wachsen mit steigender Temperatur proportional zum Dampfdruck des Wassers an. Dies gibt einen Hinweis darauf, daß die Diffusion gebundenen Wassers eher den Charakter einer molekularen Erscheinung hat, die ihrerseits eine Reihe von einfachen molekularen Verbindungsschritten einschließt, als denjenigen der Bewegung einer Flüssigkeitsmasse. Diese Vorgänge besitzen also Ähnlichkeit mit der schon früher beobachteten und geschilderten Diffusion verschiedener gebundener Flüssigkeiten durch Polymere [Bagley, Long 1955]. Unter der Bedingung, daß die Bewegungsgesch windigkeit durch Diffusion gesteuert wird, wachsen die Diffusionskoeffizienten ebenfalls exponentiell mit dem Anstieg des Feuchtigkeitsgehaltes. Alle der möglichen Diffusionswege durch das Holz sind sowohl bei ruhender und dynamischer Diffusion wirksam. Die allgemeine Gleichung (6) wird zur Gl. (17), welche die freie Dampfdiffusion, die behinderte Dampfdiffusion und die Duffusion gebundenen Wassers einschließt. Der Logarithmus des theoretisch errechneten Diffusionskoeffizienten ändert sich im umgekehreten Sinne mit dem reziproken Wert der absoluten Temperature bei einer gegebenen Dichte, was darauf hinweist, daß an dem Vorgang eine konstante Aktivierungsenergie beteiligt ist. Experimentelle Diffusionskoeffizienten, die mit Hilfe des Feuchtigkeitsgefälles, des Fauchtigkeitsgleichgewichts und der Trocknungsgeschwindigkeit errechnet wurden, ergeben Werte, die nur wenig unter den theoretischen Werten liegen, soferndiese auf die gleiche Dichte korrigiert wurden. Korrigiert man ferner die Trocknungstemperturen, und zwar von den Kammertemperaturen auf die tatsächlichen Trocknungstemperaturen, so wird die Übereinstimmung der Werte nochmals verbessert. Die Tatsache, daß die experimentell mit Hilfe der Trocknungsgeschwindigkeit bestimmten Werte gut mit den Feuchtigkeits-Gleichgewichtswerten übereinstimmen, gibt einen deutlichen Hinweis darauf, daß die Messungen der Trocknungsgeschwindigkeit durch die Diffusion bestimmt sind. Die hier angegebenen Beweise zeigen ziemlich klar die Komplexität der Flüssigkeitsbewegung in Holz auf und lassen jene Gebiete erkennen, in denen weitere experimentelle Forschung sinnvoll erscheint.
    Notes: Summary Diffusion can occur in a porous swelling material, such as wood, under three different types of gradients through different parts of the structure. Duffusion of a solute can occur under a concentration gradient through the microscopically visible solvent filled void structure, irrespective of whether the wood swells. When it does swell the wood, additional diffusion can occur through the bound part of the liquid. Diffusion of nonswelling gases and vapors is confined to the microscopically visible voids. It occurs under a vapor pressure gradient. Bound swelling liquids can diffuse through the cell walls under a bound liquid gradient. It is also possible for continuous vapor diffusion through the coarse capillary structure to occur in parallel with continuous bound liquid diffusion through the cell walls. The two may also be in series combination. This necessitates condensation of vapor on a cell wall after passing through the voids under a vapor pressure gradient followed by passage through the cell wall under a bound liquid gradient and re-evaporation into the next void. These complex combinations of diffusion paths under different motivating gradients have been theoretically analyzed on the basis of diffusion being analogous to electrical conduction where conductivities in parallel are additive and reciprocals of conductivities (resistances) in series are additive. It is thus possible to combine the cross sections and lengths of the different diffusion paths together with separately determined diffusion coefficients on simpler systems in parallel and series combination so as to obtain theoretical combined effective diffusion coefficients. All, or only part, of the six different structures shown in equation (6) may be involved in diffusion through wood. In the case of diffusion of a solute through wood saturated with a swelling solvent, all of the structures are effective. Solution of the equation for diffusion in the fiber direction shows that the fractional fiber cavity cross section almost entirely controls the rate, whereas in the transverse directions the rate is largely controlled by the communicating structure. This is in agreement with experimental diffusion and electrical conductivity measurements, which give diffusion coefficients relative to that of the solute in bulk solvent equal to the fractional fiber cavity cross-section, corrected for the taper of the fibers. The experimental diffusion coefficients, relative to that through the solvent in bulk in the transverse directions, ranged from 0.01...0.06 compared to the elctrical conductivity values of 0.02...0.033, and a theoretical value of 0.0445 over a similar range in specific gravities. Relative diffusion coefficients for the diffusion of a solute through wood saturated with a non-swelling solvent will be less due to the fact that the terms C a , C e and C c in equation (6) will be zero. These same terms are also eliminated in the diffusion of gases and non-swelling vapors through wood. When all of the diffusion is considered to be free vapor diffusion, the theoretical values are about 30 times the experimental values for transverse diffusion of carbon dioxide, but only about twice for longitudinal diffusion. If the discrepancies are considered to be entirely due to hindered diffusion occurring through the pit membrane openings, hindered diffusion coefficients 1/40 and 1/30 of the free diffusion are obtained, due to the fact that many of the openings are smaller than the mean free path of the gas. Measurements of the continuous bound water diffusion in the wood substance have been made by filling the voids of the wood with a low fusion metal that expands slightly upon solidification. These values vary but slightly between species and are independent of the specific gravity of the wood, as the E values of equation (14) take the specific gravity into account. The values in the fiber direction are about twice those in the radial direction and three times those in the tangential direction. The diffusion coefficients increase with an increase in temperature in proportion to the vapor pressure of water. This indicates that bound water diffusion must be a molecular phenomenon involving many single molecular jumps rather than being a mass movement of liquid. This is similar to the previously observed diffusion of various bound liquids through polymers [Bagley, Long 1955]. Under conditions where the rate of movement is diffusion controlled, the diffusion coefficients also increase exponentially with an increase in moisture content. All of the possible paths through wood may be effective both for steady state and dynamic diffusion through wood. The general equation (6) becomes equation (17) which involves free vapor diffusion, hindered vapor diffusion, and bound water diffusion. The logarithm of the theoretically calculated diffusion coefficient varies inversely with the reciprocal of the absolute temperature for a given specific gravity, indicating that a constant activation energy is involved. Experimental diffusion coefficients calculated from moisture gradient, steady state and rate of drying data give values only slightly lower than the theoretical values when corrected to the same specific gravity. When the drying temperatures are corrected from oven temperatures to effective drying temperatures, the agreement is further improved. The fact that the experimental values determined by rate of drying are in quite good agreement with the steady state values, is a good indication that the rate measurements are diffusion controlled. The evidence here presented clearly indicates the complexity of fluid movement in wood and points out the areas in which further experimentation is desired.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 3 (1969), S. 301-323 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Zusammenfassung Die bekannten Bedingungen für die Sorption und Quellung von Holz werden erörtert. Sie sind auf Nadelholz unter Anwendung des folgenden, vereinfachten Modells anwendbar. Die Fasern sind durchgehend und haben rechteckigen oder kreisförmigen Querschnitt, mit Zellhohlräumen gleicher Form und konstanter Größe. Die Faserwände bestehen aus konzentrisch angeordneten Schichten, die wiederum aus kleinen, sich wiederholenden 100 Å×100 Å großen Einheiten zusammengesetzt sind; diese wiederum bestehen aus einem mikrokristallinen Kern, umgeben von einer amorphen Auflagerung. Alle Sorptions- und Quellungsvorgänge finden an der Oberfläche oder innerhalb dieser amorphen Auflagerung statt; sie spielen sich in der Hauptsache in der Schicht selbst ab (inter-laminar), jedoch findet genügend Zwischenschicht-Sorption und-Quellung (intra-laminar) statt, um Verformungen der Schichten zu vermeiden. Durch Berechnung erhält man die allgemein anerkannte Größe der inneren Sorptionsfläche für Wasser von etwa 200 m2/g. Der Anteil der intra-laminaren Sorption an der Gesamtsorption schwankt zwischen 5 und 20% bei Holz mit Rohdichten von 0.3 bis 1.0. Die Schichtdicke der sorbierten Wassermoleküle je Sorptionsstelle liegt für inter-laminare Sorption zwischen 6.1 und 4.9, und für intra-laminare Sorption zwischen 0.35 und 1.35 bei Holz mit Rohdichten zwischen 0.3 bis 1.0. Ähnliche Werte ergaben sich aus experimentell ermittelten Quellungsdaten bei Zellhohlräumen mit sich änderndem Querschnitt. Vergleichbare Berechnungen der Super-Quellung des Holzes und des Zellstoffes zeigen, daß laminare Abtrennungen so groß werden können, daß sie mikroskopisch sichtbar werden. Sie zeigen ferner, daß die Fasersättigungspunkte bei gebundenem Wasser meist zwischen 25 und 40% liegen. Extrem gequollenes Holz, chemisch herausgelöste und gemahlene Fasern können aufgrund verringerter Behinderung Fasersättigungspunkte über 150% erreichen. Diese letztere Erscheinung ist eher den Dispersions- oder Diffusionskräften zuzuschreiben als den Kräften aus Wasserstoffbrücken des gebundenen Wassers im intakten Holz.
    Notes: Summary The known requirements for the sorption and swelling of wood are reviewed. These are shown to be compatible, in the case of softwoods, with the following simplified model. The fibers are continuous with either rectangular or circular cross sections and lumen of the same shape with a constant size. The fiber walls consist of concentric lamina made up of small repeating units 100 Å by 100 Å, consisting of a microcrystalline core surrounded by an amorphous sheath. All sorption and swelling occurs at the surfaces of or within the amorphous sheath. The major portion of the sorption and swelling is inter-laminar with just sufficient intra-laminar sorption and swelling to avoid laminar distortion. Calculations give the generally accepted internal sorption surface for water of about 200 square meters per gram. The portion of the total sorption that is intra-laminar varies from 5 ... 20 percent in going from wood with a specific gravity of 0.3 ... 1.0. Thickness of sorption in water molecules per sorption site vary from 6.1 ... 4.9 for inter-laminar sorption and 0.35 ... 1.35 for intra-laminar sorption in going from wood with a specific gravity of 0.3 to one of 1.0. Similar values are obtained from experimental swelling data where lumen cross sections change. Similar calculations for super swelling of wood and pulps show that laminar separations may become sufficiently great to be microscopically visible. The calculations show that bound water fiber saturation points for wood normally fall in the range of 25 ... 40 percent. Super swollen wood, chemically isolated fibers and beaten fibers may as a result of reduced restraints have fiber saturation points greater than 150 percent. The latter are attributed to dispersion or diffusion forces rather than the conventional bound water forces of hydrogen bonding for intact wood.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Measurements of the gas pressure just required to displace saturating liquids and allow a slow continuous stream of gas to pass through ponderosa pine and redwood cross sections over a broad range of thicknesses at varying distances from pith to bark, together with the surface tensions of the liquids, have been used to calculate: (1) maximum lumen radii and maximum fiber lengths from the data for the thinner specimens, and (2) maximum pit pore radii for the specimens thicker than the maximum fiber lengths. Maximum lumen radii and maximum fiber lengths both increase from pith to bark and with increasing height in the tree. Maximum effective pit pore radii increase from the pith to the sapwood transition point, then increase abruptly followed by a variable zone in the sapwood. Displacement of water or a wetting agent solution gave comparable results for never-dried wood. Drying from water and resoaking reduced the maximum effective pit pore size. Drying from a wetting agent soaked condition followed by resoaking reduced the loss in permeability but not to the degree anticipated. ponderosa pine sapwood, that had been exposed to bacterial action, showed a large increase in the maximum effective communicating opening sizes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 6 (1972), S. 263-271 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Measurements of the gas pressure required to displace water and allow gas bubbles to start continuously passing through the void structure of hardwood cross sections varying in thickness from 0.1 ... 10.0 cm have been used to calculate the maximum effective opening diameters. These diameters decrease with an increase in the thickness of the cross sections, as is the case for softwoods. Extrapolation of diameter—thickness plots to zero thickness gives the maximum vessel diameters, which agree well with microscopically determined values. The relatively small decrease in the maximum effective opening diameters with increasing thickness of the cross sections for most of the sapwood samples tested is due to irregularities in the vessel diameters and presence of perforation plates at the ends of the vessel segments. The decrease in the maximum effective opening diameter with an increase in the thickness of the cross sections is greater for the heartwood than for the sapwood. The ratio of the sapwood to the heartwood values tends to become constant between cross section thicknesses of 2.5 and 5.0 cm. This ratio was small for tyloses free northern red oak but appreciable for the hardwoods containing tyloses in the heartwood. Air drying followed by oven drying and resaturating of the specimens with water caused only small variable changes in the maximum effective opening diameters that were within the range of experimental accuracy of the measurements (approximately 5%).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 7 (1973), S. 212-217 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Measurements of the air pressure required to initially displace a saturating liquid and allow a slow continuous stream of air bubbles to pass through wood cross sections of different thickness, together with the equilibrium surface tension of the saturating liquid, make it possible to calculate the maximum effective opening radii. Previous measurements were made for wood as a whole over complete annual rings. Measurements reported here were made separately for earlywood and latewood. Extrapolating plots of the maximum effective opening radius-cross section thickness, for thicknesses below the maximum fiber length, to zero thickness gave maximum lumen radii of 16 μm for the earlywood and 10.3 μm for the latewood. The values are only slightly greater than the calculated average values. Extrapolating the plots in the opposite direction to zero opening radius gave approximate maximum lumen or fiber lengths for the earlywood of 6 mm and for the latewood of 5 mm. The maximum effective opening radii for cross sections thicker than the maximum fiber length give maximum effective communicating pore radii. These values continue to decrease, with increasing thickness of the cross sections due to the decreasing probability of the largest openings falling in any one series path through the structures. The maximum effective pit pore radius for passage through fifty pits in series was 0.8 μm for the earlywood and 0.28 μm for the latewood.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 7 (1973), S. 285-296 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Oven dry highly evacuated sticks of the sapwood of various hardwoods, 40 cm long by 1.0 to 1.2 cm in the radial and tangential directions, took up water to the extent of 44 to 82% of saturation by capillary flow in one minute. Heartwood sticks took up 15 to 38% of saturation in one minute. The initial rapid penetration was followed by a penetration in which the take up increase directly with the square root of elapsed time. In this range, the slope of toluene take up plots was about twice that of the water take up. This is close to the theoratical value on the basis of viscous flow control. The linear portion of the plots is followed by a curvilinear decrease in rate of take up to a final equilibrium value. Water take ups approached 100% of the theoretical values. Times to 0.99 of theoretical filling with water varied from 9 minutes for tupelo gum sapwood to 14.6 to 17.3 days for white oak heartwood. Complete filling with toluene was never attained. Diffuse porous hardwoods filled to the extent of 93.5 to 96.5% of saturation. Ring porous oaks filled to the extent of 88 to 92%, the lower values being for heartwood. Edge coating of the sapwood of yellow poplar and yellow birch with epoxy glue reduced the rate of penetration only slightly. End coating reduced the rate to a higher degree. Moisture gradients in the fiber direction for tyloses-free hardwoods were negligible at various stages of penetration, indicating that filling of the vessels was practically instantaneous. White oak heartwood gave an initial longitudinal gradient followed by a negligible gradient, indicating that longitudinal penetration is primarily through the lumen of the fibers rather than continously through the vessels. Longitudinal penetration was calculated to be 31.5 times as deep as transverse penetration in 100 minutes and 33.3 times as deep in 25 minutes for white oak heartwood. The ratios are of the same order of magnitude as for Loblolly pine. In both cases the ratios are smaller than values calculated from the fiber dimensions alone as ray cell penetration and cross grain effects tend to lower the ratios.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Wood science and technology 8 (1974), S. 300-306 
    ISSN: 1432-5225
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Mono and diammonium acid phosphate, ammonium sulfamate, and sodium silicate were compared with polyethylene glycol-1000 as bulking dimension stabilizing agents using Engelmann spruce cross sectional wafers. Limiting antiswell efficiencies are equal to the volume fraction of chemical in a saturated solution. The experimental antiswell efficiencies due to bulking are the percent increase in the dry cross sectional area of the wafers caused by deposition of dry chemical within the cell walls divided by the percent swelling in water. These values for the phosphates, the sulfamate, and the polyethylene glycol approach the limiting values from solubility indicating that chemical continues to diffuse into the cell walls as the wood is dried to virtually attain a saturated solution within that structure. The sodium silicate gave an apparent negative antiswell efficiency as collapse of the fibers on drying exceeded the actual bulking. Antiswell efficiencies between 0 and 30% relative humidity, 0 and 90% relative humidity and 30 and 90% relative humidity were in general still lower. This is largely due to the treated systems taking up more water than the controls, especially at the higher relative humidity. Antiswell efficiencies for the mono ammonium acid phosphate ranged from 20 to 27%, for the diammonium acid phosphate from 28 to 37%, the ammonium sulfamate from 51 to 66% and the polyethylene glycol from 63 to 77%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...