Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Mineral-fixed ammonium ; Non-exchangeable ammonium ; Soil particle-size fractions ; Soil texture ; 15N ; N turnover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Four soils with 6, 12, 23, and 47% of clay were incubated for 5 years with 15N-labeled (NH4 2SO4 and hemicellulose. The incubations took place at 20°C and 55% water-holding capacity. Samples of whole soils, and clay- (〈2 μm) and silt-(2–20 μm) size fractions (isolated by ultrasonic dispersion and gravity sedimentation) were analysed for labeled and native mineral-fixed ammonium. Mineral-fixed ammonium in non-incubated soil samples accounted for 3.4%–8.3% of the total N and showed a close positive correlation with the soil clay content (r 2 = 0.997). After 5 years of incubation, the content of mineral-fixed ammonium in the clay fraction was 255–430 μg N g−1, corresponding to 71%–82% of the mineral-fixed ammonium in whole soils. Values for silt were 72–166 μg N g−1 (14%–33% of whole soil content). In the soils with 6% and 12% clay, less than 1 % of the labeled clay N was present as mineral-fixed ammonium. In the soil with 23% clay, 3% of the labeled N in the clay was mineral-fixed ammonium. Labeled mineral-fixed ammonium was not detected in the silt fractions. For whole soils, and clay and silt fractions, the proportion of native N present as mineral-fixed ammonium varied between 3% and 6%. In contrast, the proportion of labeled N found as mineral-fixed ammonium in the soil with 4701o clay was 23%, 38% and 31% for clay, silt, and whole-soil samples, respectively. Corresponding values for native mineral-fixed ammonium were 12%, 16%, and 10%. Consequently, studies based on soil particle-size fractions and addressing the N turnover in clay-rich soils should consider the pool of mineral-fixed ammonium, especially when comparing results from different size fractions with those from fractions isolated from soils of a widely different textural composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 459-464 
    ISSN: 1432-0789
    Keywords: Key words Crop residues ; Hordeum vulgare L. ; Pisum sativum L. ; Mineralization-immobilization ; turnover of N ; Symbiotic N2 fixation-labelled N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and 〈1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 459-464 
    ISSN: 1432-0789
    Keywords: Crop residues ; Hordeum vulgare L. ; Pisum sativum L. ; Mineralization-immobilization turnover of N ; Symbiotic N2 fixation-labelled N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and 〈1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 162 (1994), S. 31-37 
    ISSN: 1573-5036
    Keywords: homogeneity of labelling ; mineralization ; mobile nylon bag ; ryegrass hay ; sheep manure ; water-soluble N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A sheep was fed on15N-labelled ryegrass hay during a period of 9 days in order to obtain15N-labelled manure. After 9 days of feeding, the total N in faeces contained 3.70 atom %15N excess, which was equivalent to 82% of the15N enrichment of the hay N. The easily-decomposable fraction of the faecal N was less labelled (2.89 atom %15N excess) than the slowly-decomposable fraction. The15N enrichment of mineralized faecal N did not change significantly during 32 weeks of incubation in sand. About 25% of the faecal N was water-soluble. This N had a higher15N enrichment than the total faecal N, indicating that a part of the water-soluble N was indigestible feed N. The faeces contained only small amounts of NH 4 + -N, which had a15N enrichment similar to the15N enrichment of N mineralized during incubation in sand. It is suggested that the labelled faecal N obtained after a few days of feeding on labelled feed could be divided in two N pools: A decomposable N fraction (about 60%) with a15N enrichment similar to the enrichment of N mineralized in sand (2.89 ± 0.09 atom %15N excess), and a very slowly-decomposable N fraction (about 40%) with a15N enrichment similar to that of the feed (4.52 atom %15N excess).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: animal manure ; immobilization ; leaching ; mineralization ; N-balance ; ryegrass ; spring barley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The fate of nitrogen from15N-labelled sheep manure and ammonium sulfate in small lysimeters and plots in the field was studied during two growth seasons. In April 1991,15N-labelled sheep faeces (87 kg N ha−1) plus unlabelled (NH4)2SO4 (90 kg N ha−1), and (15NH4)2SO4 (90 kg N ha−1) were each applied to three soils; soil 1 (100% soil + 0% quartz sand), soil 2 (50% soil + 50% quartz sand) and soil 3 (25% soil + 75% quartz sand). The lysimeters were cropped with spring barley (Hordeum vulgare L.) and undersown ryegrass (Lolium perenne L.). The barley crop recovered 16–17% of the labelled manure N and 56% of the labelled (NH4)2SO4-N. After 18 months 30% of the labelled manure N and 65% of the labelled (NH4)2SO4-N were accumulated in barley, the succeeding ryegrass crop and in leachate collected below 45 cm of soil, irrespective of the soil-sand mixture. Calculating the barley uptake of manure N by difference of N uptake between manured and unmanured soils, indicated that 4%, 10% and 14% of the applied manure N was recovered in barley grown on soil-sand mixtures with 16%, 8% and 4% clay, respectively. The results indicated that the mineralization of labelled manure N was similar in the three soil-sand mixtures, but that the manure caused a higher immobilization of unlabelled ammonium-N in the soil with the highest clay content. Some of the immobilized N apparently was remineralized during the autumn and the subsequent growth season. After 18 months, 11–19% of the labelled manure N was found in the subsoil (10–45 cm) of the lysimeters, most of this labelled N probably transported to depth as organic forms by leaching or through the activities of soil fauna. In unplanted soils 67–74% of the labelled manure N was recovered in organic form in the 0–10 cm soil layer after 4 months, declining to 55–64% after 18 months. The lowest recovery of labelled N in top-soil was found in the soil-sand mixture with the lowest clay content. The mass balance of15N showed that the total recovery of labelled N was close to 100%. Thus, no significant gaseous losses of labelled N occurred during the experiment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: A-value ; Barley ; Field bean ; Isotope dilution ; Nitrogen fixation ; 15N ; Non-fixing reference crop ; Pea ; Pisum sativum ; Vicia faba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The total amount of nitrogen derived from symbiotic nitrogen fixation in two pea and one field bean cultivar, supplied with 50 kg N ha−1 at sowing (‘starter’-N), was estimated to 165, 136, and 186 kg N ha−1, respectively (three-year means). However, estimates varied considerably between the three years. At the full bloom/flat pod growth stage from 30 to 59 per cent of total N2 fixation had taken place. The proportion of total N derived from N2 fixation at maturity was higher in seeds than in vegetative plant parts and amounted to 59.5, 51.3 and 66.3 per cent of total above-ground plant N in the two pea cultivars and field bean, respectively (three-year means). The recovery of fertilizer N was 62.2, 70.2, 52.1, and 69.5 per cent in the two pea cultivars, field bean and barley, respectively. Growth analysis indicated that barley did not meet the claims for an ideal reference crop in the15N fertilizer dilution technique for estimating N2 fixation in pea and field bean. ‘Starter’-N neither increased the seed yield nor the N content of the grain legumes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5036
    Keywords: 15N ; Cucumis sativus ; Glomus intraradices ; hyphal N transport ; plant N status ; VA mycorrhiza
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Cucumis sativus L. cv. Aminex (F1 hybrid) was grown alone or in symbiosis with Glomus intraradices Schenck and Smith in containers with two hyphal compartments (HCA and HCB) on either side of a root compartment (RC) separated by fine nylon mesh. Plants received a total of either 100, 200 or 400 mg N which were applied gradually to the RC during the experiment. 15N was supplied to HCA 42 d after plating, at 50 mg 15NH4 +-N kg−1 soil. Lateral movement of the applied 15N towards the roots was minimized by using a nitrification inhibitor and a hyphal buffer compartment. Non-mycorrhizal controls contained only traces of 15N after a 27 d labelling period irrespective of the amount of N supplied to the RC. In contrast, 49, 48 and 27% of the applied 15N was recovered in mycorrhizal plants supplied with 100, 200 and 400 mg N, respectively. The plant dry weight was increased by mycorrhizal colonization at all three levels of N supply, but this effect was strongest in plants of low N status. The results indicated that this increase was due partly to the improved inflow of N via the external hyphae. Root colonization by G. intraradices was unaffected by the amount of N supplied to the RC, while hyphal length increased in HCA compared to HCB. Although a considerable 15N content was detected in mycorrhizal roots adjacent to HCB, only insignificant amounts of 15N were found in the external hyphae in HCB. The external hyphae depleted the soil of inorganic N in both HCA and HCB, while the concentration of soil mineral N was still high in non-mycorrhizal containers at harvest. An exception was plants supplied with 400 mg N, where some inorganic N was present at 5 cm distance from the RC in HCA. The possibility of a regulation mechanism for hyphal transport of N is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...