Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 74.70.Tx  (1)
  • Brain tumors  (1)
  • 1
    ISSN: 1432-0533
    Keywords: Fibroblast growth factor (FGF) ; Basic FGF ; Angiogenesis ; Brain tumors ; Immunohistochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fibroblast growth factor (FGF) is a potent angiogenic factor and a mitogen for a variety of mesoderm-and neuroectoderm-derived cell types (e.g., fibroblasts, endothelial cells, astrocytes, oligodendrocytes). After application of a monospecific polyclonal antiserum, we localized basic FGF on frozen sections of 73 human brain tumors using immunohisto-chemistry. FGF was present in a variable number of tumor cells (16/16 astrocytomas, 5/5 ependymomas, 0/3 benign and 4/7 anaplastic oligodendrogliomas, 11/12 glioblastomas, 11/11 meningiomas, 6/6 neurilemmomas, 0/3 pituitary adenomas, 2/2 choroid plexus papillomas, 0/1 neurocytoma, 2/2 benign fibrous histiocytomas, 2/5 metastatic carcinomas). FGF was detected in vascular cells of 59 tumors and in fibroblasts of connective tissue stroma from all papillomas and metastases. These results tend to indicate FGF involvement in the malignant progression of gliomas due to an autocrine or paracrine action. Histopathological aspects of malignant gliomas (e.g., pseudopalisading or pathological vessels) could be related to FGF activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of low temperature physics 102 (1996), S. 367-379 
    ISSN: 1573-7357
    Keywords: 74.25.Fy ; 74.70.Tx
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We study the thermal conductivity within the E1g and E2u models for superconductivity in UPt3 and compare the theoretical results for electronic heat transport with recently measured results reported by Lussier, Ellman and Taillefer. The existing data down to T/Tc ≈ 0.1 provides convincing evidence for the presence of both line and point nodes in the gap, but the data can be accounted for either by an E1g or E2u order parameter. We discuss the features of the pairing symmetry, Fermi surface, and excitation spectrum that are reflected in the thermal conductivity at very low temperatures. Significant differences between the E1g and E2u models are predicted to develop at excitation energies below the bandwidth of the impurity-induced Andreev bound states. The zero-temperature limit of the ĉ axis thermal conductivity, limT→0 kc/T, isuniversal for the E2u model, but non-universal for the E1g model. Thus, impurity concentration studies at very low temperatures should differentiate between the nodal structures of the E2u and E1g models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...