Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ADP ribosylation  (1)
  • Antirrhinum majus  (1)
  • PACS. 33.15.Kr Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility - 33.55.Be Zeeman and Stark effects  (1)
Material
Years
Keywords
  • 1
    ISSN: 1573-5028
    Keywords: Petunia hybrida ; Antirrhinum majus ; flavonoid synthesis ; dihydroflavonol-4-reductase ; regulatory genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays. The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively). Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: GTP binding ; ADP ribosylation ; Zea mays ; Escherichia coli ; fatty acid biosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In an attempt to isolate a plant malonyl-coenzyme A:acyl carrier protein transacylase cDNA clone, by direct genetic selection in an Escherichia coli fabD mutant (LA2-89) with a maize cDNA expression library, a Zea mays cDNA clone encoding a GTP-binding protein of the ARF family was isolated. Complementation of a mutation affecting bacterial membrane lipid biosynthesis by a plant ARF protein, could indicate the existence of as yet unidentified bacterial equivalents of this ubiquitous eucaryotic GTP-binding protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1434-6079
    Keywords: PACS. 33.15.Kr Electric and magnetic moments (and derivatives), polarizability, and magnetic susceptibility - 33.55.Be Zeeman and Stark effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract: A non perturbative approach is used to solve the problem of a rigid linear molecule with both a permanent dipole moment and a static dipole polarizability, in a static electric field. Eigenenergies are obtained and compared to perturbative low field and high field approximations. Analytical expressions for the orientation parameters and for the gradient of the energy are given. This non perturbative approach is applied to the simulation of beam deviation experiments in strong electric field. Results of simulations are given for inhomogeneous alkali dimers. For LiNa, the simulations are compared to experimental data. For LiK, deviation profiles have been simulated in order to prepare future experiments on this molecule.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...