Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Anaerobic threshold  (1)
  • Antioxidant enzymes  (1)
  • Antioxidants  (1)
  • 1
    ISSN: 1439-6327
    Keywords: Key words Fatigue ; Antioxidant enzymes ; Non-protein thiols ; Lipid peroxidation ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Endurance exercise training promotes a small but significant increase in antioxidant enzyme activity in the costal diaphragm (DIA) of rodents. It is unclear if these training-induced improvements in muscle antioxidant capacity are large enough to reduce oxidative stress during prolonged contractile activity. To test the hypothesis that training-related increases in DIA antioxidant capacity reduces contraction-induced lipid peroxidation, we exercise trained adult female Sprague-Dawley (n = 7) rats on a motor-driven treadmill for 12 weeks at ≈ 75% maximal O2 consumption (90 min/day). Control animals (n = 8) remained sedentary during the same 12-week period. After training, DIA strips from animals in both experimental groups were excised and subjected to an in vitro fatigue contractile protocol in which the muscle was stimulated for 60 min at a frequency of 30 Hz, every 2 s, with a train duration of 330 m. Compared to the controls, endurance training resulted in an increase (P 〈 0.05) in diaphragmatic non-protein thiols and in the activity of the antioxidant enzyme superoxide dismutase. Following the contractile protocol, lipid peroxidation was significantly lower (P 〈 0.05) in the trained DIA compared to the controls. These data support the hypothesis that endurance exercise training-induced increases in DIA antioxidant capacity protect the muscle against contractile-related oxidative stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 52 (1984), S. 173-177 
    ISSN: 1439-6327
    Keywords: Anaerobic threshold ; Ventilatory threshold ; Exercise ventilation ; Gas exchange ; Blood lactate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Anaerobic threshold has been defined as the oxygen uptake ( $$\dot V_{{\text{O}}_{\text{2}} }$$ ) at which blood lactate (La) begins to rise systematically during graded exercise (Davis et al. 1982). It has become common practice in the literature to estimate the anaerobic threshold by using ventilatory and/or gas exchange alterations. However, confusion exists as to the validity of this practice. The purpose of this study was to examine the precision with which ventilatory and gas exchange techniques for determining anaerobic threshold predicted the anaerobic threshold resolved by La criteria. The anaerobic threshold was chosen using three criteria: (1) systematic increase in blood La (ATLa), (2) systematic increase in ventilatory equivalent for O2 with no change in the ventilatory equivalent for CO2 ( $${\text{AT}}_{\dot V_{\text{E}} } /\dot V_{{\text{O}}_{\text{2}} }$$ ), and (3) non-linear increase in expired ventilation graphed as a function of $$\dot V_{{\text{O}}_{\text{2}} }$$ ( $${\text{AT}}_{\dot V_{\text{E}} }$$ ). Thirteen trained male subjects performed an incremental cycle ergometer test to exhaustion in which the load was increased by 30 W every 3 minutes. Ventilation, gas exchange measures, and blood samples for La analysis were obtained every 3rd min throughout the test. In five of the thirteen subjects tested the anaerobic threshold determined by ventilatory and gas exchange alterations did not occur at the same $$\dot V_{{\text{O}}_{\text{2}} }$$ as the ATLa. The highest correlation between a gas exchange anaerobic threshold and ATLa was found for $${\text{AT}}_{\dot V_{\text{E}} } /\dot V_{{\text{O}}_{\text{2}} }$$ and was r=0.63 (P〈0.05). These data provide evidence that the ATLa and $${\text{AT}}_{\dot V_{\text{E}} }$$ do not always occur simultaneously and suggest limitations in using ventilatory or gas exchange measures to estimate the ATla.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1439-6327
    Keywords: Key words Diaphragm ; Oxidative stress ; Fatigue ; Lipid peroxidation ; Antioxidants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract These experiments tested the hypothesis that short-term endurance exercise training would rapidly improve (within 5 days) the diaphragm oxidative/antioxidant capacity and protect the diaphragm against contraction-induced oxidative stress. To test this postulate, male Sprague-Dawley rats (6 weeks old) ran on a motorized treadmill for 5 consecutive days (40–60 min · day−1) at approximately 65% maximal oxygen uptake. Costal diaphragm strips were excised from both sedentary control (CON, n=14) and trained (TR, n=13) animals 24 h after the last exercise session, for measurement of in vitro contraction properties and selected biochemical parameters of oxidative/antioxidant capacity. Training did not alter diaphragm force-frequency characteristics over a full range of submaximal and maximal stimulation frequencies (P 〉 0.05). In contrast, training improved diaphragm resistance to fatigue as contraction forces were better-maintained by the diaphragms of the TR animals during a submaximal 60-min fatigue protocol (P 〈 0.05). Following the fatigue protocol, diaphragm strips from the TR animals contained 30% lower concentrations of lipid hydroperoxides compared to CON (P 〈 0.05). Biochemical analysis revealed that exercise training increased diaphragm oxidative and antioxidant capacity (citrate synthase activity +18%, catalase activity +24%, total superoxide dismutase activity +20%, glutathione concentration +10%) (P 〈 0.05). These data indicate that short-term exercise training can rapidly elevate oxidative capacity as well as enzymatic and non-enzymatic antioxidant defenses in the diaphragm. Furthermore, this up-regulation in antioxidant defenses would be accompanied by a reduction in contraction-induced lipid peroxidation and an increased fatigue resistance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...