Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Vestibular  (7)
  • Analytical Chemistry and Spectroscopy  (5)
  • Ultrastructure  (5)
  • Inhibition  (4)
Material
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 280 (1988), S. 308-318 
    ISSN: 1432-069X
    Keywords: Pili annulati ; Ultrastructure ; DACM staining ; Hair cortex ; Protein metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Plucked scalp hairs and hair roots of pili annulati were examined to understand their pathogenesis. Stereoscopic examinations of hairs in transmitted light and/or reflected light and light microscopic surveys of the cross-sections of hairs confirmed that the cortical empty spaces appeared to be responsible to the unique dotted shiny appearance of the hairs seen by the unaided eyes under a refracted light. By transmission electron microscope, small vacuoles and dense bodies were observed in the cytoplasm of the differentiating cortical cells; subsequently, with increasing number of tonofilaments, an uneven distribution of free ribosomes occurred and abnormal spaces containing fine granular substances were formed in the cytoplasm of the cortical cells. Occasionally, extremely large cortical trichohyaline granules were found. In the keratinized hair, irregular empty spaces were present in the cortex of the abnormal hair segments. Histochemically, the keratinized cortex of the affected hairs always had more residual SH groups than the controls. Pili annulati may be a disorder of protein metabolism involving a partial dysfunction of cytoplasmic ribosomes, resulting in a lack of cortical keratin formation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 284 (1992), S. 95-99 
    ISSN: 1432-069X
    Keywords: Chromoblastomycosis ; Host-fungus relationship ; Morphometry ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To investigate the histological distribution and the morphology of the fungi and the tissue reactions in chromoblastomycosis, especially in the process of trans-epidermal elimination, cutaneous lesions of two patients with this disease were studied morphometrically and ultrastructurally. In the dermis, most of the fungal elements appeared as sclerotic cells and their cell wall showed an irregular, worm-eaten leaf-like appearance; they seemed to be continuously attacked by polymorphonuclear neutrophils. The epidermis eliminated 10–20% of all the organisms in the skin lesions, and the hypha-forming activity tended to be higher in the epidermis than in the dermis. Ultrastructurally, basal keratinocytes facing the dermal abscess containing fungal elements frequently appeared as dark cells, suggesting an increased proliferation activity. Spinous keratinocytes facing intraepidermal microabscesses containing fungal elements showed an abnormal accumulation of tonofilaments and further early keratinization in the spinous cell layer. All of the morphological changes of the dermis and epidermis are regarded as defence reactions against the fungi existing in the skin lesions. There is a close relationship between tissue reactions and morphological changes of fungi in chromoblastomycosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-069X
    Keywords: Inflammatory linear epidermal naevus ; Keratinization ; DACM ; Involucrin ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Skin lesions of three patients with inflammatory linear verrucose epidermal naevus (ILVEN) were examined. Histologically, orthokeratosis and parakeratosis were alternately seen in the acanthotic epidermis. By N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide staining, the horny cells in the parakeratotic epidermis showed a cytoplasmic SH pattern and a weak membranous SS pattern. The orthokeratotic epidermis revealed an increased involucrin expression, whereas the parakeratotic epidermis showed almost no involucrin expression. Ultrastructurally, in the parakeratotic epidermis, the living keratinocytes had prominent Golgi apparatuses and vesicles in the cytoplasm. In the intercellular spaces in the upper spinous layer through to the lower horny layer, an electron dense, homogeneous substance was deposited. The cytoplasm of the horny cells was filled with keratin filaments and contained remnants of nucleus and cytoplasmic membrane structures, and some lipid droplets. The marginal band formation was incomplete. Most of these ultrastructural abnormalities were not found in the orthokeratotic epidermis. There are both similarities and differences in histopathogenesis of the parakeratotic epidermis between ILVEN and psoriasis. A unique finding was the lack of involucrin expression in the ILVEN parakeratotic epidermis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of dermatological research 282 (1990), S. 434-441 
    ISSN: 1432-069X
    Keywords: Hair cycle ; Human hair follicle ; Connective tissue sheath ; Hyaline membrane ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Ultrastructural changes of the connective tissue sheath (CTS), including the hyaline membrane, of human hair follicles during the hair cycle, were studied in normal scalp skin specimens. In early anagen, the CTS was composed of a thin basal lamina and surrounding collagen tissue. The collagen tissue gradually thickened during the development of the hair and hair follicle. In mature anagen hair follicles, the collagen tissue was separated into three layers. The inner collagen layer, just outside the basal lamina, was thin and composed of collagen fibres running longitudinally parallel to the hair axis. The middle collagen layer was very thick with its collagen fibres running transversely against the hair axis and surrounding the inner hair tissue. Many fibroblasts were present among the collagen fibres in the middle layer, whereas the inner layer contained almost none. In the outer collagen layer, collagen fibres ran in various directions parallel to the outer surface of the outer root sheath cells. In late anagen, the basal lamina became very thick. In catagen, the basal lamine and the inner collagen layer became corrugated and showed oedematous change and degeneration. Surrounding fibroblasts showed active production of new collagen fibres, which seemed to fill the spaces left by the retraction of the hair follicle and hyaline membrane. These ultrastructural changes of the CTS show that there may be dynamic metabolic changes of the connective tissue around human hair follicles during the hair cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 10 (1970), S. 64-80 
    ISSN: 1432-1106
    Keywords: Intracerebellar nuclei ; Purkinje cells ; Inhibition ; Excitation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anaesthetized cats, synaptic events in cerebellar nuclei neurones were investigated with intracellular microelectrode techniques. These cells were identified by their antidromic activation along their axons and/or by their location in histological sections. In the cells of lateral nucleus IPSPs were induced monosynaptically during stimulation of the overlying hemispheral cortex of the cerebellum. In the cells of nuclei interpositus and fastigii, similar IPSPs were produced from the paravermal and vermal cortices, respectively. The postulate that the Purkinje cells exert an inhibitory action upon their target neurones thus applies not only to Deiters neurones, as previously proposed, but also to cells in the cerebellar nuclei. Stimulation of the cerebellar afferents at the inferior olive, the pontine nucleus and the lateral reticular nucleus produced EPSPs in cerebellar nuclei cells with relatively brief latencies, probably through axon collaterals of these afferents. The EPSPs were followed by IPSPs and slow depolarizations of disinhibitory nature, which, as studied previously in Deiters neurones, might be caused respectively by activation and subsequent depression of Purkinje cells through the cerebellar intracortical mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 26 (1976), S. 89-103 
    ISSN: 1432-1106
    Keywords: Vestibular ; Oculomotor ; Canal ; Inhibition ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anesthetized albino rabbits, electric pulse stimulation was applied to ampullary branches of the vestibular nerve. Reflex discharges evoked from a canal in an extraocular muscle were depressed very effectively by conditioning stimulation at a certain other canal. The present systematic survey revealed that this reflex depression occurred specifically in 3 combinations of conditioning and testing canals; 1. anterior and posterior canals of the same side; 2. anterior and posterior canals of the opposite sides; and 3. horizontal canals of the two sides. Occurrence of postsynaptic inhibition in oculomotor neurons, on the other hand, was indicated by appearance of slow muscle potentials in extraocular muscles. It was confirmed that this motoneuronal inhibition did not contribute to the reflex depression in the above combination (1). Even in combinations (2) and (3), the accompanying motoneuronal inhibition was eliminated by adjusting intensities of canal stimuli or by severing its pathway in the medulla, or it was discriminated from the reflex depression by their different latencies and time courses. Hence, it was concluded that the reflex depression was attributable, at least largely, to non-motoneuronal inhibition, presumably postsynaptic inhibition at relay neurons for vestibulo-ocular reflexes. Slow muscle potentials evoked from a canal were also used as testing responses, but their depression could not be detected after conditioning at other canals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 14 (1972), S. 511-526 
    ISSN: 1432-1106
    Keywords: Vestibular ; IIIrd nucleus ; Flocculus ; Inhibition ; Picrotoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anaesthetized rabbits, the vestibulo-ocular reflex was evoked by electric stimulation of VIIIth nerve and was observed by recording postsynaptic potentials and relevant field potentials in Illrd nucleus. The electric stimulation of flocculus produced a prominent inhibition of the vestibulo-ocular reflex in both the inhibitory component relayed by the superior vestibular nucleus and the excitatory component mediated by the brachium conjunctivum. The excitatory component mediated by the medial vestibular nucleus appeared to be free of the flocculus inhibition. The flocculus inhibition was blocked very effectively by systemic injection of picrotoxin. That the flocculus inhibitory action is due to monosynaptic postsynaptic inhibition of secondary vestibular neurones was demonstrated by direct stimulation of, and also by recording from, the superior nucleus. Recording from the superior nucleus was also performed in anaesthetized cats. All of these above results indicate that Purkinje cells in flocculus projecting to vestibular and cerebellar nuclei cells have inhibitory synaptic action. Flocculus stimulation produced also an excitatory effect upon vestibular nuclei neurones. However, this effect could be attributed to intracerebellar activation of the primary vestibular fibers which pass into the flocculus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Deiters neurones ; Inhibition ; Climbing fibre responses ; Inferior olive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular recording with microelectrodes has been employed to reveal the causal relationship between the trans-synaptic activation of cerebellar Purkinje cells and the postsynaptic inhibition of Deiters neurones. Cerebellar stimulation produced in Deiters neurones not only monosynaptic IPSPs with latency of 0.9–1.5 msec, but also the delayed IPSPs at 1.5–9 msec. Correspondng to the latter, Purkinje cells were found to be activated orthodromically with the characteristic climbing fibre responses (CFRs), the latency varying from 0.8 up to 10 msec. On the other hand, stimulation of the inferior olive first induced EPSPs in Deiters neurones, presumably monosynaptically, then with a short delay of less than a millisecond CRFs in Purkinje cells of the anterior lobe, which in turn were succeeded by IPSPs in Deiters neurones after a further delay of a millisecond. Spinal stimulation activated the inferior olive trans-synaptically and thereby produced CFRs in Purkinje cells and a sequence of EPSPs and IPSPs in Deiters neurones. Close correlation between these spinal-induced events in both neurone species was further indicated by the concurrence of their fluctuations in intensity, these fluctuations being characteristic of the spino-olivary transmission mechanism. These results strongly support the postulate that the cerebellar Purkinje cells are inhibitory in their action upon Deiters neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 18 (1973), S. 446-463 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Vestibular ; Spinocerebellar ; Purkinje ; Deiters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The organization of the cerebellar, vestibular and spinal inputs to the lateral and medial vestibulospinal tract (LVST and MVST) cells was studied in anaesthetized rabbits. Synaptic actions of these inputs were determined by recording postsynaptic potentials intracellularly and also unit spike discharges extracellularly from a number of LVST and MVST cells. As reported previously in cats, inhibition was evoked very frequently from the vermal cortex of the cerebellar anterior lobe and less frequently from that of the posterior lobe. However, no such inhibition was derived from the flocculus. The cerebellar inhibition was exerted upon both LVST and MVST cells, whether they received monosynaptic activation from the primary vestibular afferents (second-order) or not and whether they conducted impulses fast or slowly. However, the inhibition was frequently absent in “slow” “second-order” MVST cells. The vast majority of LVST and MVST cells received an excitatory input from the spinocerebellar afferents ascending the funiculus posterolateralis. This input was particularly prominent from the upper cervical cord. The spinal excitation thus obtained occurred in close connection with the cerebellar inhibition. Hence, it appears that the cerebellar vermis receives the spinal signals that drive LVST and MVST cells and in turn sends out inhibitory signals to adjust the reflex activity in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 8 (1969), S. 190-200 
    ISSN: 1432-1106
    Keywords: Vestibular ; EPSP ; IPSP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurones in the descending, medial and superior vestibular nuclei of the cats were explored with intracellular microelectrodes. Cerebellar- and spinal-projecting neurones were identified by their antidromic invasion from the region of fastigial nuclei and from the second cervical segment, respectively, and the others by their location. The central actions of the primary vestibular impulses upon these non-Deiters vestibular nuclei neurones were investigated by using electric stimulation of the ipsilateral vestibular nerve. Many of these cells received excitatory postsynaptic potentials (EPSPs) monosynaptically, similar to those evoked in the ventral Deiters neurones, as described elsewhere, except that the unitary EPSPs are often larger. Some cells received only polysynaptic EPSPs or IPSPs and a few cells were not influenced at all.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...