Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ouabain  (4)
  • Antitoxin  (3)
  • Botulinum toxin  (3)
  • Depolarization  (3)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 312 (1980), S. 255-263 
    ISSN: 1432-1912
    Keywords: Acetylcholine ; Tetanus toxin ; Botulinum toxin ; Myenteric plexus ; Transmitter release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of tetanus and botulinum A toxin were studied on the electrically stimulated myenteric plexus-ileum strip of the guinea pig. The concentrations used were in the range of 104–106 mouse LD50/ml. 1. Tetanus and botulinu, A toxin slowly decrease the amplitude of the contractile response to field stimulation in a dose-dependent manner without influencing the sensitivity to acetylcholine of the smooth muscle. 2. Development of paralysis is preceded by a latent period. Washing and antitoxin slow the paralytic process only when applied during the latent period. 3. The time course of development of paralysis depends on the activity of the strip. It can be slowed by rest, high [Mg2+], or low [Ca2+], and accelerated by raising the stimulation frequency. 4. Substances like 4-aminopyridine, sea anemone toxin II and scorpion toxin which prolong the membrane depolarization restore temporarily the contraction of partially paralysed muscle strips. 5. Poisoned preparations do not differ from controls in their total acetylcholine contents, whereas formation as well as release of [3H]-acetylcholine are decreased by either toxin. It is concluded that a) tetanus toxin and botulinum A toxin are qualitatively indistinguishable with respect to their actions on the postganglionic cholinergic neurons in the ileum, botulinum A toxin being 5 times more potent than tetanus toxin, b) the effects of the toxins at postganglionic cholinergic neurons in the ileum and at motor nerve endings are qualitatively similar, botulinum A toxin being about 500 times more potent than tetanus toxin at the latter preparation (see Habermann et al., 1980b, c) both toxins influence the turnover of acetylcholine but not its tissue concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 316 (1981), S. 143-148 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum toxin ; Acetylcholine ; Calcium ; Brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Slices or particles from rat forebrain cortex were preloaded with [3H]choline, and the release of [3H]acetylcholine was evoked with potassium ions in a superfusion system. Release depended on the presence of calcium. 1. Incubation of the preloaded tissue preparation for 2 h with tetanus or botulinum A toxin did not change the [3H]acetylcholine content or the ratio [3H]acetylcholine/[3H]choline. Tetanus toxin diminished, dependent on dose and time, the release of [3H]acetylcholine evoked by 25 mM K+. It was about ten times more potent than botulinum A toxin. The effect of botulinum toxin was due to its neurotoxin content. Raising the potassium concentration partially overcame the inhibition by the toxins. Hemicholinium-3, applied to preloaded slices, left the subsequent [3H]acetylcholine release unchanged. Pretreatment of particles with neuraminidase diminished the content of long-chain gangliosides to the detection limit. Such particles remained fully sensitive to tetanus toxin, and at least partially sensitive to botulinum A toxin. 2. The potassium or sea anemone toxin II stimulated uptake of 45Ca2+ into cortex synaptosomes or particles was not inhibited by either toxin. Both toxins appear to impede the Ca2+-dependent mobilization of an easily releasable acetylcholine pool, without inhibiting the transmembranal calcium fluxes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 323 (1983), S. 261-268 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Erythrocyte ; Membrane ; Na+, K+-ATPase ; Calcium ; Ouabain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Palytoxin increases the permeability of human erythrocytes and their resealed ghosts. To elucidate its mode of action the activation by ATP and Ca2+, the inhibition by ouabain, and the changes in permselectivity have been studied: 1. Depletion of cells from ATP considerably depresses their sensitivity towards palytoxin. Ouabain prevents the actions of the toxin, however, with different inhibition characteristics in normal and depleted cells. The concentration of palytoxin required to raise the K+ permeability is higher in ghosts than in erythrocytes. The sensitivity is restored by incorporating ATP which can be partially substituted by ADP and GTP but not by AMP, Pi, β-γ-methylene adenosine 5′-triphosphate or the chromium (III) complex of ATP. Ouabain inhibits the K+ release from resealed ghosts in the presence as well as absence of ATP. Ouabain also inhibits the palytoxin-triggered Na+ and choline efflux into Na+ medium, as well as the Na+, K+ and choline efflux into choline medium. Phosphate promotes the inhibitory action of ouabain. Incorporated vanadate or Mg2+ do not change the sensitivity of ghosts toward palytoxin. 2. External calcium down to 10 μM potentiates the action of palytoxin in ghosts resealed with or without ATP. In contrast to calcium ionophore A23187, palytoxin does not raise the influx of Ca2+. 3. Palytoxin triggers the formation of small pores in resealed ghosts. The efflux into Na+ medium decreases in the order K+≧Na+〉[3H]choline≫[14C]inositol〉[14C]sucrose, [3H]inulin≅0. Our data suggest that palytoxin, once bound to erythrocyte membranes, transforms the sodium pump, or its functional vicinity, into a pore allowing the passive transport of small ions. This process is assisted by ATP from inside whereas Ca2+ promotes from the outside the efficacy of palytoxin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 319 (1982), S. 101-107 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Ouabain ; Erythrocytes ; Permeability ; ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Palytoxin in concentrations as low as 1 pM raises the potassium permeability of rat, human and sheep erythrocytes, and the sodium permeability of human erythrocytes. The release of potassium or sodium from human cells also occurs when extracellular sodium is replaced by choline. 2. Ouabain inhibits the release due to palytoxin of potassium ions from human, sheep and rat erythrocytes, and also the release of sodium ions from human cells. The glycoside effect is specific since a) it is already prominent with 5×10−8 M ouabain b) rat erythrocytes are less sensitive than human cells to ouabain c) potassium release due to amphotericin B or the Ca2+ ionophore A23187 is not influenced by ouabain and d) dog erythrocytes are resistant to palytoxin as well as to ouabain. 3. Palytoxin has no direct influence on the Na+, K+-ATPase. It inhibits the binding of [3H]ouabain to erythrocyte membranes within the same concentration range as unlabelled ouabain. It partially displaces bound [3H]ouabain, and partially inhibits the inactivation of erythrocyte ATPase by the glycoside. Depletion of ATP or of external Ca2+ renders the cells less sensitive to palytoxin. Nevertheless inhibition by ouabain can be still demonstrated with human cells whose ATP stores had been largely exhausted, and also in the absence of external Ca2+. 4. Palytoxin decreases the surface tension at the air-water interface. We assume that the formation of nonspecific pores by palytoxin is linked with its surface activity. Further experiments should demonstrate whether ouabain prevents the binding of palytoxin to erythrocytes (“receptor hypothesis”), or whether an ouabain-sensitive hydrolysis of trace amounts of ATP (“metabolic hypothesis”) promotes the palytoxin effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 330 (1985), S. 77-83 
    ISSN: 1432-1912
    Keywords: Dendrotoxin ; Potassium channel ; Nerve fibre ; Depolarization ; GABA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of dendrotoxin (DTX), a toxic peptide from Dendroaspis angusticeps venom, were studied electrophysiologically on peripheral frog nerve fibres, and biochemically on large synaptosomes from rat brain. 1. On nerve fibres, DTX reduced the amplitude and prolonged the duration of the action potential; even at 0.1 nmol/l DTX produced significant effects. Maximum block of potassium currents occurred at about 30 nmol/l. Turning on of the remaining current was slowed. Reversibility was incomplete. The reduction of potassium currents was between 31% and 85% at 85 nmol/l DTX (n=8). The remainder appeared to be resistant to DTX. Sodium channels were not affected. 2. On large synaptosomes DTX (above 1 nmol/l) produced a slight depolarization, indicated by an outward shift of the lipophilic cation tetraphenylphosphonium, and promoted the release of radioactivity after preloading with [3H] GABA. DTX had similar potency but lower efficacy in this respect than sea anemone toxin II (ATX II). In contrast to the effects of ATX II, those due to DTX were only partially inhibited by tetrodotoxin. The actions of 4-aminopyridine resembled those of DTX, but the latter was about 500 times more potent. The electrophysiological data provide direct evidence for blockade of a potassium channel by DTX. This action is sufficient to explain the biochemical observations, although additional effects on synaptosomes cannot be excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 325 (1984), S. 85-87 
    ISSN: 1432-1912
    Keywords: Na+, K+-ATPase ; Palytoxin ; Ouabain ; Kidney ; Erythrocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Hog kidney Na+, K+-ATPase, purified to the microsomal stage and activated with detergent, binds palytoxin, as shown by the nearly complete competition of the toxin with 3H-ouabain. The K i-values of palytoxin, but not of ouabain, depend on the protein concentration; this indicates additional binding sites for the toxin on kidney membranes. — Palytoxin inhibits the enzymatic activity of the detergent-activated preparation nearly completely (IC50 8·10−7 mol/l). Inhibition of ATPase activity and of ouabain binding are promoted by borate, a known activator of palytoxin. — Palytoxin also inhibits the Na+, K+-ATPase of erythrocyte ghosts in the same dose range. The data are discussed in context with the hypothesis (Chhatwal et al. 1983) that palytoxin raises the cellular permeability by altering the state of Na+, K+-ATPase or its environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 341-359 
    ISSN: 1432-1912
    Keywords: Tetanus Toxin ; Iodine Labelling ; Central Nervous System ; Receptors ; Antitoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Lyophilized homogenate of rat brain binds 125I-labelled tetanus toxin better than does homogenate from spinal cord. This is in contrast to the in vivo behaviour of the toxin where it is bound only to spinal cord. Liver homogenate does not fix the toxin. 2. Autoradiography of preincubated slices from spinal cord shows that the radioactivity is evenly and nearly exclusively bound to gray matter. 3. Maximally 40% of the labelled material interacts with brain homogenate. The toxicity of the remaining supernatant is much more reduced than is its radio-activity. 125I-toxoid, prepared from labelled toxin by treatment with formol, is bound only very weakly. Thus we assume that our toxin preparation is already partially toxoided, and that binding to CNS matter bears some relevance to toxicity. 4. The fixation of the labelled toxin is reversible. The degree of reversibility depends on the conditions used. Binding can be nearly completely reversed or prevented by treatment with antitoxin, but not more than 50% of the binding is reversed by treatment with unlabelled toxin. Repeated washings also remove the bulk of the initially bound toxin. Thus binding sites with different affinities are to be assumed. 5. A complex between ganglioside and cerebroside binds the labelled toxin more firmly than does brain homogenate. No competition between unlabelled and labelled toxin has been observed for this solid phase. Antitoxin nearly completely prevents and largely reverses the fixation of labelled toxin. 6. On the basis of the selective, competitive reactivity of labelled and unlabelled tetanus toxin with brain matter, a radio receptor assay has been developed. It can be used for the measurement of tetanus toxin down to 5 ng. 7. Gradient centrifugation of sucrose homogenates preincubated with labelled toxin reveals one peak of radioactivity in the fractions where the synaptosomes are to be expected; the larger part of the toxin remains, however, unevenly distributed near the starting volume. 8. Desoxycholate solubilizes the complex between labelled toxin and brain matter with parallel dissolution of brain proteins. 9. Neither brain nor spinal cord homogenates degrade labelled toxin into TCA-soluble fragments at pH 7.5. Partial degradation occurs, however, at pH 3.5.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 311 (1980), S. 33-40 
    ISSN: 1432-1912
    Keywords: Tetanus toxin ; Botulinum toxin ; Neuromuscular junction ; Calcium ; Neuraminidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. The blocking effect of tetanus toxin on the neuromuscular junction of the mouse phrenic nervehemidiaphragm preparation exposed to the toxin (0.05–20 μg/ml) in the organ bath was studied and compared with the action of botulinum A toxin. 2. The time course of the paralysis of the diaphragm could be divided into a latent and a manifest period. Still during the latent period the effect of the toxin became progressively resistant to washing and, with some delay, to antitoxin. 3. Between 25 and 41°C the time until paralysis strongly depended on temperature with Q 10 of about 2.7. 4. Procedures increasing the transmitter release shortened, and procedures depressing it prolonged the time until paralysis. 5. 4-Aminopyridine and guanidine temporarily restored the contraction of the partially paralyzed diaphragm, indicating the persistence of activatable calcium and acetylcholine pools. Raising the external Ca2+-concentration and application of the Ca-Ionophore A 23187 were ineffective in the doses applied. 6. About 80 min after exposure to the toxin (10 μg/ml), the m.e.p.p. activity decreased by a factor of 30. Parallel to this, paralysis of nerve evoked muscle contraction developed. 7. Neuraminidase treatment did not prevent tetanus toxin poisoning. 8. The paralysis is produced by tetanus toxin itself and not by contaminants as shown by the parallel decrease of toxicity and paralysis following treatment with either antitoxin or brain homogenate, or by the use of spontaneously inactivated toxin. 9. Tetanus toxin was compared with botulinum A toxin as to the shape of its dose-response curve, time course of paralysis, temporary reversal by 4-aminopyridine and behaviour against Ca-ionophore. In any case, both toxins were indistinguishable, albeit botulinum A neurotoxin was calculated to be about 2000 times more potent than tetanus toxin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 323 (1983), S. 269-275 
    ISSN: 1432-1912
    Keywords: Palytoxin ; Tetraphenylphosphonium ; Depolarization ; Binding ; Borate ; Calcium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Palytoxin in concentrations as low as 10−11 to 10−12 M promotes the outflow of the lipophilic [3H]-tetraphenylphosphonium ion from particulate brain cortex of guinea-pigs and rats, and from preloaded crude synaptosomes of rats, which indicates depolarization. The outflow is not influenced by tetrodotoxin or the calcium channel blocker nimodipin, or by substitution of choline for Na+ ions. It is increased by Ca2+ and by borate, the latter interacting with the toxin itself. To assess the fixation of palytoxin to biological membranes, a binding step was installed before the depolarization step. Palytoxin binds to membranes from rat brain, liver, kidney, human and dog erythrocytes, and to a lesser degree to liposomes made from rat brain or erythrocyte lipids. Binding is reversible. It is decreased by mild physical pretreatments of crude synaptosomes. Palytoxin binding is increased in the presence of micromolar concentrations of Ca2+ or borate. It is concluded that the potentiation of palytoxin actions by Ca2+ or borate is at least partially due to the promotion of its binding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 361-373 
    ISSN: 1432-1912
    Keywords: Tetanus Toxin ; Iodine Labelling ; Spinal Cord ; Autoradiography ; Antitoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The in vivo interaction of 125I-labelled toxin with substructures of rat spinal cord has been studied. The rats were poisoned by i.v. injection about 40–50 h before sacrifice. 1. The labelled material accumulates in the grey substance, which is, on microdissection, about 6 times more active than the white. Autoradiography reveals that the toxin is particularly enriched in the ventrolateral part of the grey substance. 2. On ultracentrifugation of the homogenates, the label is preferentially fixed to the dense fractions known to contain the synaptosomes. However, a considerable part of the toxin is fixed to the lighter fractions too. 3. Upon gel filtration, the labelled material in SDS-homogenates from spinal cords poisoned in vivo is indistinguishable from toxin added to the homogenates already prepared. The same is true for the bulk of radioactivity when subjected to disc gel electrophoresis. 4. The labelled material is degraded by enzymes from spinal cord at pH 3.5, but not at pH 7.5. 5. The labelled material is relatively firmly bound to structures of spinal cord. The bonding is fairly resistant against washing, even in the presence of an excess of cold toxin, but it can be partially released by treatment with antitoxin. According to these findings, the labelled material is firmly but not irreversibly bound in vivo to discrete structures, corresponding preferentially to the synaptosomal fractions in the homogenates and the ventrolateral grey in the slices. No evidence has been found for its degradation in vivo. So far, the bulk of labelled material in the spinal cord is indistinguishable from tetanus toxin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...