Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Extracellular matrix ; transforming growth factor-β ; prostaglandins ; thromboxane ; mesangial cell ; diabetes mellitus.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Accumulation of extracellular matrix in the mesangium and altered renal eicosanoid synthesis are two prominent features of diabetic glomerular disease. We investigated the relationship between eicosanoid and extracellular matrix production in rat mesangial cells cultured under high glucose vs normal glucose conditions. Long-term exposure of rat mesangial cells to high glucose, but not to iso-osmolar mannitol, significantly increased extracellular matrix accumulation and gene expression and transforming growth factor-β (TGF-β) mRNA levels, and decreased prostaglandin (PG) E2 synthesis without affecting production of either thromboxane (TX) B2 or PGF2 a, with respect to cells incubated in normal glucose. Addition of exogenous PGE2 resulted in a dose-dependent reduction of matrix protein and mRNA levels and TGF-β gene expression in cells cultured in either normal or high glucose conditions, whereas exposure to exogenous PGF2α produced a significant increment in matrix production and matrix and TGF-β gene expression in cells grown in normal glucose, but only a slight increase in those cultured in high glucose. Stimulation of endogenous endoperoxide metabolism towards PGE2 and PGF2α synthesis with FCE-22,178, a drug originally developed as TXA2 synthase inhibitor, resulted in a dose-dependent decrease in matrix accumulation and matrix and TGF-β gene expression which was suppressed by co-incubation with the cyclo-oxygenase inhibitor fenoprofen blocking the FCE-22,178-enhanced PG production. In both cell lines, the rate of synthesis of TXA2 was very low and the selective blockade of its synthesis (by two other TXA2 synthase inhibitors, OKY-046 and Ridogrel) or action (by the TXA2 receptor antagonist BM-13,177) did not alter matrix production or TGF-β mRNA levels. These results suggest that the cyclo-oxygenase pathway is involved in the regulation of matrix changes induced by high glucose in rat mesangial cells; the reduced production of PGE2 may enhance the synthesis or potentiate the effect of stimulators of ECM formation such as TGF-β, whereas TXA2 does not appear to be involved. These data also indicate that glucose-enhanced mesangial matrix accumulation may be prevented by exogenous PGE2 or by drugs capable of increasing endogenous PGE2 synthesis. [Diabetologia (1996) 39: 1055–1062]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Extracellular matrix ; transforming growth factor-Β ; prostaglandins ; thromboxane ; mesangial cell ; diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Accumulation of extracellular matrix in the mesangium and altered renal eicosanoid synthesis are two prominent features of diabetic glomerular disease. We investigated the relationship between eicosanoid and extracellular matrix production in rat mesangial cells cultured under high glucose vs normal glucose conditions. Long-term exposure of rat mesangial cells to high glucose, but not to iso-osmolar mannitol, significantly increased extracellular matrix accumulation and gene expression and transforming growth factor-Β (TGF-Β) mRNA levels, and decreased prostaglandin (PG) E2 synthesis without affecting production of either thromboxane (TX) B2 or PGF2α, with respect to cells incubated in normal glucose. Addition of exogenous PGE2 resulted in a dose-dependent reduction of matrix protein and mRNA levels and TGF-Β gene expression in cells cultured in either normal or high glucose conditions, whereas exposure to exogenous PGF2α produced a significant increment in matrix production and matrix and TGF-Β gene expression in cells grown in normal glucose, but only a slight increase in those cultured in high glucose. Stimulation of endogenous endoperoxide metabolism towards PGE2 and PGF2α synthesis with FCE-22,178, a drug originally developed as TXA2 synthase inhibitor, resulted in a dose-dependent decrease in matrix accumulation and matrix and TGF-Β gene expression which was suppressed by co-incubation with the cyclo-oxygenase inhibitor feno-profen blocking the FCE-22,178-enhanced PG production. In both cell lines, the rate of synthesis of TXA2 was very low and the selective blockade of its synthesis (by two other TXA2 synthase inhibitors, OKY-046 and Ridogrel) or action (by the TXA2 receptor antagonist BM-13,177) did not alter matrix production or TGF-Β mRNA levels. These results suggest that the cyclo-oxygenase pathway is involved in the regulation of matrix changes induced by high glucose in rat mesangial cells; the reduced production of PGE2 may enhance the synthesis or potentiate the effect of stimulators of ECM formation such as TGF-Β, whereas TXA2 does not appear to be involved. These data also indicate that glucose-enhanced mesangial matrix accumulation may be prevented by exogenous PGE2 or by drugs capable of increasing endogenous PGE2 synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-5233
    Keywords: Apolipoprotein gene ; Restriction fragment length polymorphism ; Non-insulin-dependent diabetes mellitus ; Coronary heart disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The aim of this study was to verify whether or not the increased prevalence of coronary heart disease (CHD) commonly observed in patients with type 2 diabetes mellitus is related to a genetic background involving restriction fragment length polymorphisms (RFLPs) of apolipoproteins. On the basis of a case-control design, 62 type 2 diabetic patients with CHD (confirmed by clinical history and electrocardiogram) and 62 age- and sexmatched diabetic subjects without CHD were enrolled. In each of them RFLPs of the apolipoprotein CIII gene (S1 or S2 allele) and AI promoter region (A or G allele), together with fasting plasma lipids and apolipoproteins levels, were assessed. The rare S2 allele was found significantly (P=0.05) more frequently in patients with CHD, and its related S1S2 genotype was associated with higher plasma levels of total cholesterol (P=0.01), triglycerides (P=0.007) and apo B (P=0.001) than the S1S1 genotype. The A allele was more frequent (P=0.004) in patients without CHD and was associated with lower plasma cholesterol (P=0.0001), low-density lipoprotein (LDL)-cholesterol (P=0.0001) and apo B (P=0.005). The S1/A haplotype was more frequent (P=0.05) in patients without CHD and was associated with the lowest plasma lipid levels. These results suggest that genetic factors, related to the apo AI-CIII-AIV gene cluster, could play a role in the development of CHD in type 2 diabetic patients, probably through modification of their plasma lipid pattern.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...