Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hordeum vulgare  (8)
  • nitrate reductase  (3)
  • Arabidopsis thaliana  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science Letters 36 (1984), S. 13-18 
    ISSN: 0304-4211
    Keywords: Hordeum vulgare ; antiserum ; inactivation ; nitrate reductase ; rocket immunoelectrophoresis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 23 (1984), S. 229-232 
    ISSN: 0031-9422
    Keywords: Gramineae ; Hordeum vulgare ; barley ; mutants. ; nitrate reductase ; peptide mapping ; stability
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 21 (1982), S. 531-533 
    ISSN: 0031-9422
    Keywords: Gramineae ; Hordeum vulgare ; barley ; casein. ; leaves ; nitrate ; reductase ; stability
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 25 (1986), S. 1275-1279 
    ISSN: 0031-9422
    Keywords: Gramineae ; Hordeum vulgare ; NAD(P)H nitrate reductase. ; barley ; kinetics ; nitrate reductase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 74 (1987), S. 714-717 
    ISSN: 1432-2242
    Keywords: Hordeum vulgare ; Mutants ; Nitrate reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 75 (1988), S. 767-771 
    ISSN: 1432-2242
    Keywords: Hordeum vulgare ; Nitrate reductase ; Linkage ; Mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nar2 locus that codes for a protein involved in molybdenum cofactor function in nitrate reductase and other molybdoenzymes was mapped to barley chromosome 7. F2 genotypic data from F3 head rows indicated nar2 is located 8.4±2.1 and 23.0± 4.6 cm from the narrow leaf dwarf (nld) and mottled seedling (mt2) loci, respectively. This locates the nar2 locus at 54.7±3.1 cm from the short-haired rachilla (s) locus near the centromere of chromosome 7. Close linkage of nar2 with DDT resistance (ddt) and high lysine (lys3) loci was detected but could not be quantified due to deviations from the individual expected 1∶2∶1 segregations for the ddt and lys3 genes. Southern blots of wheat-barley addition lines probed with a nitrate reductase cDNA located the NADH : nitrate reductase structural gene, nar1, to chromosome 6.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: QTL mapping ; β-Glucan ; β-Glucanase Malt barley ; Hordeum vulgare
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Genetic study of β-glucan content and β-glucanase activity has been facilitated by recent developments in quantitative trait loci (QTL) analysis. QTL for barley and malt β-glucan content and for green and finished malt β-glucanase activity were mapped using a 123-point molecular marker linkage map from the cross of Steptoe/Morex. Three QTL for barley β-glucan, 6 QTL for malt β-glucan, 3 QTL for β-glucanase in green malt and 5 QTL for β-glucanase in finished malt were detected by interval mapping procedures. The QTL with the largest effects on barley β-glucan, malt βglucan, green malt β-glucanase and finished malt βglucanase were identified on chromosomes 2,1,4 and 7, respectively. A genome map-based approach allows for dissection of relationships among barley and malt βglucan content, green and finished malt β-glucanase activity, and other malting quality parameters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Hordeum vulgare ; Quantitative trait loci ; Molecular mapping ; Disease resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Net blotch (caused by Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) are important foliar diseases of barley in the midwestern region of the USA. To determine the number and chromosomal location of Mendelian and quantitative trait loci (QTL) controlling resistance to these diseases, a doubled haploid population (‘Steptoe’/‘Morex’) was evaluated to the pathogens at the seedling stage in the greenhouse and at the adult plant stage in the field. Alleles at two or three unlinked loci were found to confer resistance to the net blotch pathogen at the seedling stage depending on how progeny exhibiting an intermediate infection response were classified. This result was corroborated in the quantitative analysis of the raw infection response data as 2 major QTL were identified on chromosomes 4 and 6M. A third QTL was also identified on chromosome 6P. Seven QTL were identified for net blotch resistance at the adult plant stage and mapped to chromosomes 1P, 2P, 3P, 3M, 4, 6P, and 7P. The 7 QTL collectively accounted for 67.6% of the phenotypic variance under a multiple QTL model. Resistance to the spot blotch pathogen was conferred by a single gene at the seedling stage. This gene was mapped to the distal region of chromosome 1P on the basis of both qualitative and quantitative data analyses. Two QTL were identified for spot blotch resistance at the adult plant stage: the largest QTL effect mapped to chromosome 5P and the other mapped to chromosome 1P near the seedling resistance locus. Together, the 2 QTL explained 70.1% of the phenotypic variance under a multiple QTL model. On the basis of the chromosomal locations of resistance alleles detected in this study, it should be feasible to combine high levels of resistance to both P. teres f. teres and C. sativus in barley cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 252 (1996), S. 342-345 
    ISSN: 1617-4623
    Keywords: Barley ; Arabidopsis thaliana ; Telo-mere ; Chromosome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Telomeres of most eucaryotes terminate in long stretches of short, guanine-rich repeats. Telomerase, a specialized enzyme with reverse transcriptase-like activity, has been shown to synthesize these repeats in many lower eucaryotes and several animal species. Although a sequence (TTTAGGG)n that matches the eucaryotic consensus sequence Tx(A)Gy is present in several plant species, the activity and expression patterns of plant telomerase have not been reported. Here we document the presence of telomerase activity in plant tissues using a modification of the human Telomeric Repeat Amplification Protocol (TRAP) assay. Telomerase activity was detected in barley embryo, anther and carpel tissues and in immature seeds ofArabidopsis thaliana, but not in barley leaf tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...