Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Cervical spine  (2)
  • Arthrodèse atlanto-axoïdienne postérieure  (1)
  • 1
    ISSN: 1432-0932
    Keywords: Key words Cervical spine ; Biomechanics ; Flexibility ; Interbody fusion device
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Interbody fusion cages are small hollow implants that are inserted into the intervertebral space to restore physiological disc height and to allow bony fusion. They sometimes cause clinical complications due to instability, subsidence or dislocation. These are basic biomechanical parameters, which influence strongly the quality of a fusion device; however, only few data about these parameters are available. Therefore, the purpose of the present study was to investigate the primary stabilizing effect of four different cervical fusion devices in in vitro flexibility tests. Twenty-four human cervical spine segments were used in this study. After anterior discectomy, fusion was performed either with a WING cage (Medinorm AG, Germany), a BAK/C cage (Sulzer Spine-Tech, USA), an AcroMed cervical I/F cage (DePuy AcroMed International, UK) or bone cement (Sulzer, Switzerland). All specimens were tested in a spine tester in the intact condition and after implantation of one of the four devices. Alternating sequences of pure lateral bending, flexion-extension and axial rotation moments (± 2.5 Nm) were applied continuously and the motions in each segment were measured simultaneously. In general, all tested implants had a stabilizing effect. This was most obvious in lateral bending, where the range of motion was between 0.29 (AcroMed cage) and 0.62 (BAK/C cage) with respect to the intact specimen (= 1.00). In lateral bending, flexion and axial rotation, the AcroMed cervical I/F cages had the highest stabilizing effect, followed by bone cement, WING cages and BAK/C cages. In extension, specimens fused with bone cement were most stable. With respect to the primary stabilizing effect, cages, especially the AcroMed I/F cage but also the WING cage and to a minor extent the BAK/C cage, seem to be a good alternative to bone cement in cervical interbody fusion. Other characteristics, such as the effect of implant design on subsidence tendency and the promotion of bone ingrowth, have to be determined in further studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European spine journal 9 (2000), S. 104-108 
    ISSN: 1432-0932
    Keywords: Key words Cervical spine ; Biomechanical testing ; Discoligamentous structures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The objective of this study was to determine which discoligamentous structures of the lower cervical spine provide significant stability with regard to different loading conditions. Accordingly, the load-displacement properties of the normal and injured lower cervical spine were tested in vitro. Four artificially created stages of increasing discoligamentous instability of the segment C5/6 were compared to the normal C5/6 segment. Six fresh human cadaver spine segments C4-C7 were tested in flexion/extension, axial rotation, and lateral bending using pure moments of ± 2.5 Nm without axial preload. Five conditions were investigated consecutively: (1) the intact functional spinal unit (FSU) C5/6; (2) the FSU C5/6 with the anterior longitudinal ligament and the intertransverse ligaments sectioned; (3) the FSU C5/6 with an additional 10-mm-deep incision of the anterior half of the anulus fibrosus and the disc; (4) the FSU C5/6 with additionally sectioned ligamenta flava as well as interspinous and supraspinous ligaments; (5) the FSU C5/6 with additional capsulotomy of the facet joints. In flexion/extension, significant differences were observed concerning range of motion (ROM) and neutral zone (NZ) for all four stages of instability compared to the intact FSU. In axial rotation, only the stage 4 instability showed a significantly increased ROM and NZ compared to the intact FSU. For lateral bending, no significant differences were observed. Based on these data, we conclude that flexion/extension is the most sensitive load-direction for the tested discoligamentous instabilities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0932
    Keywords: Biomécanique ; Rachis cervical ; Fracture de l'odontoïde ; Instabilité atlanto-axoïdienne ; Arthrodèse atlanto-axoïdienne postérieure ; Biomechanics ; Cervical spine ; Odontoid fracture ; Atlantoaxial instability ; Posterior atlantoaxial fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Summary Unstable C1-C2 segments are generally treated surgically. Depending on the indication a direct screw fixation of the odontoid or a C1-C2 arthrodesis is a possible technique. In this experimental in vitro study the three different atlantoaxial fusion techniques by Gallie, Brooks, and Magerl were compared biomechanically. Sixteen human C1-C2 segments with odontoid fractures of type II and III were investigated under standardized conditions. Flexion and extension moments, anterior, and posterior shear forces, left and right torsional moments were applied, and the motion of C1 relative to C2 was determined. The results of this investigation show clearly that the segments treated with the technique by Magerl with transarticular screws achieved the highest stiffness, compared to the wiring methods of Brooks and Gallie. These differences were most evident for posterior shear forces and for torsional moments. For these load conditions the ratio of stiffness Magerl: Brooks: Gallie was about 10:2:1. Significant differences for the plastic deformation of the differently fixed C1-C2 segments were found within the first few load/unload cycles, which give information about the relationship between primary and long-term stability.
    Notes: Résumé L'instabilité C1-C2 est le plus souvent traitée chirurgicalement. Selon l'indication, peuvent être proposées soit une ostéosynthèse par vissage direct de l'odontoïde, soit une arthrodèse C1-C2. Dans cette étude expérimentale in vitro, on a comparé au plan biomécanique, les trois différentes techniques d'arthrodèse atlanto-axoïdiennes, selon Gallie, Brooks et Magerl. 16 segments C1-C2 présentant des fractures de type II et III ont été testés in vitro dans des conditions bien définies. On a appliqué des moments de flexion et d'extension, des forces de cisaillement antérieur et postérieur et des moments de torsion vers la droite et vers la gauche, et l'on a analysé la mobilité de C1-C2. Les résultats de cette investigation ont clairement démontré que les segments traités par la technique de Magerl avec des vis transarticulaires, présentaient la plus grande rigidité, en comparaison des méthodes de cerclage de Brooks et de Gallie. Ces différences étaient plus évidentes dans le cas du cisaillement postérieur et de la torsion. Dans ces conditions de contrainte, le rapport de rigidité Magerl/Brooks/Gallie était de 10/2/1. Des différences significatives de déformation plastique ont été retrouvées entre les différentes fixations C1-C2 au cours des premiers cycles de mise en charge et décharge, qui renseignent sur la relation entre la stabilité primaire et à long terme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...