Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0948-5023
    Keywords: Keywords: Amides ; Hydrolysis ; Reaction mechanism ; Peptides ; Theoretical calculations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The hydrolysis of amides is a model reaction to study peptide hydrolysis. This process has been previously considered in the literature at the ab initio level. In this work, we revisit different reaction mechanisms (water-assisted, non-assisted, neutral and acid-catalyzed) with various theoretical methods : semiempirical, ab initio and Density Functional. The ab initio calculations are carried out at a computational level which is substantially higher than in previous studies. We describe the structure of the transition states and discuss the influence of the catalyst. We also compute the activation free energies for these processes at the Density Functional Theory level. Comparison of the methods allows to outline the main trends of these theoretical approaches which may be useful to design new computational strategies for investigating biological reaction mechanisms through the use of combined Quantum Mechanics/Molecular Mechanics methods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2234
    Keywords: Peptide models ; Amino acids ; Conformations, stable ; Proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The stable conformations of N and C protected amino acids of the type: HCONH-CHR-CONH2 of glycine,l-alanine andl-valine have been obtained by fully optimizedab-initio computations with a 3–21G basis set. An original procedure has been devised to extract the side-chain/backbone interaction energy and the backbone and side-chain distortion energies. This enables us to analyze the stabilization/destabilization effects introduced by the side-chain in terms of electrostatic, induction and steric hindrance contributions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8951
    Keywords: QM/MM methods ; HNE ; Bovine trypsin ; BPTI ; serine proteases ; catalytic triad
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In order to overcome the limitations of conventional molecular mechanics and quantum mechanics studies of model systems, we recently proposed a coherent computational scheme, for very large molecules, in which the subsystem that undergoes the most important electronic changes is treated by a semi-empirical quantum chemical method, though the rest of the molecule is described by a classical force field. The continuity between the two subsystems is obtained by a strictly localized bond orbital, which is assumed to have transferable properties determined on model molecules. The computation of the forces acting on the atoms is now operative, giving rise to a hybrid Classical Quantum Force Field (CQFF) which allows full energy minimization and the modelling of chemical changes in large biomolecules. As illustrative examples we present the proton exchange process in the histidine–aspartic acid system of the catalytic triad of human neutrophil elastase and the inhibition of the charge relay system in the trypsin-BPTI complex. In contrast to a classical force field, the CQFF approach reproduces the crystallographic data quite well. The method also offers the possibility of switching off the electrostatic interaction between the quantum and the classical subsystems allowing us to analyze the various components of the perturbation exerted by the macromolecule in the reactive part. Molecular dynamics confirms a fast proton exchange between the three possible energy wells in HNE. We also explain the inhibition of trypsin by BPTI by a perturbation of the catalytic triad geometry of trypsin in the presence of BPTI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...