Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Key wordsThinopyrum ponticum ; Th. intermedium ; Th. junceum ; Wheat ; BYDV ; Genome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Twenty-five partial amphiploids (2n=8x=56), which were derived from hybrids of wheat (Triticum aestivum L.) with either Thinopyrum ponticum (Podpera) Liu & Wang, Th. intermedium (Host) Barkworth & D. Dewey, or Th. junceum (L.) A. Löve, were assayed for resistance to BYDV serotype PAV by slot-blot hybridization with viral cDNA of a partial coat protein gene. Three immune lines were found among seven partial amphiploids involving Th. ponticum. Seven highly resistant lines were found in ten partial amphiploids involving Th. intermedium. None of eight partial amphiploids or 13 addition lines of Chinese Spring –Th. junceum were resistant to BYDV. Genomic in situ hybridization demonstrated that all of the resistant partial amphiploids, except TAF46, carried an alien genome most closely related to St, whether it was derived from Th. ponticum or Th. intermedium. The two partial amphiploids carrying an intact E genome of Th. ponticum are very susceptible to BYDV-PAV. In TAF46, which contains three pairs of St- and four pairs of E-genome chromosomes, the gene for BYDV resistance has been located to a modified 7St chromosome in the addition line L1. This indicates that BYDV resistance in perennial polyploid parents, i.e., Th. ponticum and Th. intermedium, of these partial amphiploids is probably controlled by a gene(s) located on the St-genome chromosome(s).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: Thinopyrum ponticum ; Th. intermedium ; Th. junceum ; Wheat ; BYDV ; Genome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Twenty-five partial amphiploids (2n=8x=56), which were derived from hybrids of wheat (Triticum aestivum L.) with either Thinopyrum ponticum (Podpera) Liu & Wang, Th. intermedium (Host) Barkworth & D. Dewey, or Th. junceum (L.) A. Löve, were assayed for resistance to BYDV serotype PAV by slot-blot hybridization with viral cDNA of a partial coat protein gene. Three immune lines were found among seven partial amphiploids involving Th. ponticum. Seven highly resistant lines were found in ten partial amphiploids involving Th. intermedium. None of eight partial amphiploids or 13 addition lines of Chinese Spring — Th. junceum were resistant to BYDV. Genomic in situ hybridization demonstrated that all of the resistant partial amphiploids, except TAF46, carried an alien genome most closely related to St, whether it was derived from Th. ponticum or Th. intermedium. The two partial amphiploids carrying an intact E genome of Th. ponticum are very susceptible to BYDV-PAV. In TAF46, which contains three pairs of St- and four pairs of E-genome chromo somes, the gene for BYDV resistance has been located to a modified 7 St chromosome in the addition line L1. This indicates that BYDV resistance in perennial polyploid parents, i.e., Th. ponticum and Th. intermedium, of these partial amphiploids is probably controlled by a gene(s) located on the St-genome chromosome(s).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Wheat streak mosaic virus ; Wheat curl mite ; Triticeae ; Partial amphiploids ; Wheat ; Resistance analysis ; GISH ; Genome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (WCM), is one of the most important viral diseases of wheat (Triticum aestivum) in the world. Genetic resistance to WSMV and the WCM does not exist in wheat. Resistance to WSMV and the WCM was evaluated in five different partial amphiploids namely Agrotana, OK7211542, ORRPX, Zhong 5 and TAF 46, which were derived from hybrids of wheat with decaploid Thinopyrum ponticum or with hexaploid Th. intermedium. Agrotana was shown to be immune to WSMV and the WCM; the other four partial amphiploids were susceptible to the WCM. Genomic in situ hybridization (GISH) using genomic DNA probes from Th. elongatum (EE, 2n=14), Th. bessarabicum (JJ, 2n=14), Pseudoroegneria strigosa (SS, 2n=14) and T. aestivum (AABBDD, 2n=42) demonstrated that three of the partial amphiploids, Agrotana, OK7211542 and ORRPX, have almost identical alien genome constitutions: all have 16 alien chromosomes, with 8 chromosomes being closely related to the Js genome and 8 chromosomes belonging to the E or J genomes and no evidence of any S-genome chromosomes. GISH confirmed that the alien genomes of Agrotana and OK7211542, like ORRPX, were all derived from Th. ponticum, and not from Th. intermedium. However, in contrast to Agrotana, ORRPX and OK7211542 were susceptible to the WCM and WSMV. The partial amphiploid Zhong 5 had a reconstituted alien genome composed of 4 S-and 4 Js-genome chromosomes of Th. intermedium with 6 translocated chromosomes between the S and Js genomes. This line was highly resistant to WSMV, but was susceptible to the WCM. TAF 46, which contained a synthetic genome consisting of 3 pairs of S-genome chromosomes and 4 pairs of E- or J-genome chromosomes in addition to the 21 pairs of wheat chromosomes, was susceptible to the WCM, but moderately resistant to WSMV. Agrotana offers great potential for transferring WSMV and WCM resistance into wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 78 (1989), S. 387-392 
    ISSN: 1432-2242
    Keywords: Hordeum ; Barley ; Ribosomal DNA ; Polymorphism ; Restriction analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Tandemly repeated DNA sequences containing structural genes encoding ribosomal RNA (rDNA) were investigated in 25 species of Hordeum using the wheat rDNA probe pTA71. The rDNA repeat unit lengths were shown to vary between 8.5 and 10.7 kb. The number of length classes (1–3) per accession generally corresponded to the number of nucleolar organizing regions (NORs). Intraspecific variation was found in H. parodii, H. spontaneum and H. leporinum, but not in H. bulbosum. Restriction analysis showed that the positions of EcoRI, SacI and certain BamHI cleavage sites in the rRNA structural genes were highly conserved, and that repeat unit length variation was generally attributable to the intergenic spacer region. Five rDNA BamHI restriction site maps corresponded to the following groups of species: Map A — H. murinum, H. glaucum, H. leporinum, H. bulbosum, H. marinum, H. geniculatum; Map B — H. leporinum; Map C — H. vulgare, H. spontaneum, H. agriocrithon; Map D — H. chilense, H. bogdanii; and Map E — remaining 14 Hordeum species. The repeat unit of H. bulbosum differed from all other species by the presence of a HindIII site. The closer relationship of H. bulbosum to H. leporinum, H. murinum and H. glaucum than to H. vulgare was indicated by their BamHI restriction maps.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...