Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (53)
  • biomass yield  (3)
  • Gibbs energy dissipation  (2)
Material
Keywords
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 525-534 
    ISSN: 0006-3592
    Keywords: glucose ; osmotic pressure ; ajmalicine production ; catharanthus roseus ; kinetic model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The role of glucose in ajmalicine production by Catharanthus roseus was investigated in the second stage of a two-stage batch process. Activities of tryptophan decar-boxylate (TDC) and anthranilate synthase (AS), two enzymes In the pathway leading to ajmalicine, were higher after induction with 40 g/L glucose than after induction with 60 or 80 g/L glucose. Experiments with different media containing mixtures of glucose and the nonpermeating osmotic agent xylose, and using an already induced culture as inoculum, revealed that a minimum amount of glucose is required to support ajmalicine production after enzyme induction. This requirement was not an osmotic effect. The relation between the glucose concentration and the specific ajmalicine production rate, qp, was investigated in seven (fed-)batch cultures with constant glucose concentrations: 23, 29, 35, 53, 57, 75, and 98 g/L. In the cultures with a low glucose concentration (23, 29, and 35 g/L) the qp was 2.7-times higher than the cultures with 53 and 57 g/L, and almost six times higher than the cultures with a high glucose concentration (75 and 98 g/L). A glucose perturbation experiment (from 53 to 32 g/L) demonstrated that the ajmalicine production rate was adjusted without much delay. A kinetic equation is proposed for the relationship between the glucose concentration and qp. Differences in enzyme induction and ajmalicine production at different glucose levels could not be explained by the intracellular concentrations of glucose, fructose, sucrose, or starch. © 1995 John Wiley & Sons Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 22 (1980), S. 2399-2404 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 863-874 
    ISSN: 0006-3592
    Keywords: plant cell suspension cultures ; chemostat culture ; growth kinetics ; stoichiometry ; Catharanthus roseus ; Nicotiana tabacum ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Plant cell suspension cultures of Catharanthus roseus and Nicotiana tabacum were grown in stirred tank bioreactors operated in batch and continuous mode. The stoichiometry of growth of both species in steady-state glucose limited chemostats was studied at a range of different dilution rates. A linear relation was applied to describe specific glucose uptake, oxygen consumption, and carbon dioxide production as a function of the growth rate. Specific respiration deviated greatly from the linear relation. An unstructured mathematical model, based on the observed stoichiometry in the glucose limited chemostats, was applied to describe the growth in batch culture. From a comparison between the observed growth pattern in batch fermentors and computer simulations it appeared that the stoichiometry of growth of the C. roseus culture was different under steady-state and dynamic conditions. It was concluded that a mathematical model for the growth of suspension culture plant cells in which the biomass is considered to be a single compound with an average chemical composition is of limited value because large changes in the conmposition of the biomass may occur. © 1992 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 541-549 
    ISSN: 0006-3592
    Keywords: microbial calorimetry ; heat of growth ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The possibility of continuously measuring the heat produced by microorganisms in an ordinary laboratory fermentor was studies. An inventory of the heat flows influencing the temperature of the culture was made. The magnitude and standard deviation in these heat flows were studied from theoretical and practical viewpoints. Calibration procedures were tested, and a model describing the heat flows in steady state and during dynamic conditions was made. Microbial heat production could be calculated accurately with the help of this model, appropriate temperature measurements, and equipment properties measured during the calibration procedures. It was found that the measurement of heat production could be done with an accuracy similar to that in the O2 uptake measurement. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 411-422 
    ISSN: 0006-3592
    Keywords: enzyme kinetics ; progress curve ; enantioselectivity ; covariance ; kinetic resolution ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The present study deals with kinetic modeling of enzyme-catalyzed reactions by integral progress curve analysis, and shows how to apply this technique to kinetic resolution of enantiomers. It is shown that kinetic parameters for both enantiomers and the enantioselectivity of the enzyme may be obtained from the progress curve measurement of a racemate only.A parameter estimation procedure has been established and it is shown that the covariance matrix of the obtained parameters is a useful statistical tool in the selection and verification of the model structure. Standard deviations calculated from this matrix have shown that progress curve analysis yields parameter values with high accuracies.Potential sources of systematic errors in (multiple) progress curve analysis are addressed in this article. Amongst these, the following needed to be dealt with: (1) the true initial substrate concentrations were obtained from the final amount of product experimentally measured (mass balancing); (2) systematic errors in the initial enzyme concentration were corrected by incorporating this variable in the fitting procedure as an extra parameter per curve; and (3) enzyme inactivation is included in the model and a first-order inactivation constant is determined.Experimental verification was carried out by continuous monitoring of the hydrolysis of ethyl 2-chloropropionate by carboxylesterase NP and the α-chymotrypsin-catalyzed hydrolysis of benzoylalanine mathyl ester in a pH-stat system. Kinetic parameter values were obtained with high accuracies and model predictions were in good agreement with independent measurements of enantiomeric excess values or literature data. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 0006-3592
    Keywords: error diagnosis ; filtering technique ; data reconciliation ; measurement error detection ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This article presents a method to test the presence of relatively small systematic measurement errors; e.g., those caused by inaccurate calibration or sensor drift. To do this, primary measurements - flow rates and concentrations - are first translated into observed conversions, which should satisfy several constraints, like the laws of conservation of chemical elements. This study considers three objectives: 1.Modification of the commonly used balancing technique to improve error sensitivity to be able to detect small systematic errors. To this end, the balancing technique is applied sequentially in time.2.Extension of the method to enable direct diagnosis of errors in the primary measurements instead of diagnosing errors in the observed conversions. This was achieved by analyzing how individual errors in the primary measurements are expressed in the residual vector.3.Derivation of a new systematic method to quantitatively determine the sensitivity of the error, is that error size at which the expected value of the chisquare test function equals its critical value.The method is applied to industrial data demonstrating the effectiveness of the approach. It was shown that, for most possible error sources, a systematic errors of 2% to 5% could be detected. In given application, the variation of the N-content of biomass was appointed to be the cause of errors. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 595-608 
    ISSN: 0006-3592
    Keywords: biofilm ; aerobic waste water treatment ; airlift reactor ; waste water ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, the conditions for aerobic biofilm formation on suspended particles, the dynamics of biofilm formation, and the biomass production during the start-up of a Biofilm Airlift Suspension reactor (BAS reactor) have been studied. The dynamics of biofilm formation during start up in the biofilm airlift suspension reactor follows three consecutive stages: bare carrier, microcolonies or patchy biofilms on the carrier, and biofilms completely covering the carrier. The effect of hydraulic retention time and of substrate loading rate on the formation of biofilms were investigated. To obtain in a BAS reactor a high biomass concentration and predominantly continuous biofilms, which completely surround the carrier, the hydraulic retention time must be shorter than the inverse of the maximum growth rate of the suspended bacteria. At longer hydraulic retention times, a low amount of attached biomass can be present on the carrier material as patchy biofilms. During the start-up at short hydraulic retention times the bare carrier concentration decreases, the amount of biomass per biofilm particle remains constant, and biomass increase in the reactor is due to increasing numbers of biofilm particles. The substrate surface loading rate has effect only on the amount of biomass on the biofilm particle. A higher surface load leads to a thicker biofilm.A strong nonlinear increase of the concentration of attached biomass in time was observed. This can be explained by a decreased abrasion of the biofilm particles due to the decreasing concentration of bare carriers. The detachment rate per biofilm area during the start-up is independent of the substrate loading rate, but depends strongly upon the bare carrier concentration.The Pirt-maintenance concept is applicable to BAS reactors. Surplus biomass production is diminished at high biomass concentrations. The average maximal yield of biomass on substrate during the experiments presented in this article was 0.44 ± 0.08 C-mol/C-mol, the maintenance value 0.019 ± 0.012 C-mol/(C-mol h). The lowest actual biomass yield measured in this study was 0.15 C-mol/C-mol. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 837-848 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; metabolic models ; stoichiometry ; polyphosphate ; poly-β-hydroxybutyrate ; glycogen ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the aerobic phase of the biological phosphorus removal process, poly-β-hydroxybutyrate, produced during anaerobic conditions, is used for cell growth, phosphate uptake, and glycogen formation. A metabolic model of this process has been developed. The yields for growth, polyphosphate and glycogen formation are quantified using the coupling of all these conversions to the oxygen consumption. The uptake of phosphate and storage as polyphosphate is shown to have a direct effect on the observed oxygen consumption in the aerobic phase. The overall energy requirements for the P-metabolism are substantial: 25% of the acetate consumed during anaerobic conditions and 60% of the oxygen consumptions is used for the synthesis of polyphosphate and glycogen. © 1994 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 435-439 
    ISSN: 0006-3592
    Keywords: Catharanthus roseus ; ajmalicine production rate ; dissolved oxygen concentration ; kinetic model ; high-density culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The relation between dissolved oxygen (DO) and the ajmalicine production rate of Catharanthus roseus was investigated in 15-L tank reactors at constant stirrer speed and gas flow rate. Below a DO concentration of 29% of air saturation the ajmalicine production rate was less than 0.06 μmol/g/d. Above a DO of 43% the ajmalicine production rate was constant at 0.21 μmol/g/d. Between a DO of 29% and 43% there was a strong relation between the ajmalicine production rate and the DO concentration. After a period of at least 12 days at DO ≤29% the culture lacked the ability to adapt to a DO ≥57%. A kinetic equation is proposed for the relation between DO and the specific ajmalicine production rate. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 481-487 
    ISSN: 0006-3592
    Keywords: biofilms ; detachment ; substrate loading ; airlift reactor ; abrasion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The dynamic change in the overall detachment rate of spherical biofilms in a biofilm airlift suspension reactor was measured after a downshift of the substrate loading rate to zero while all other conditions remained constant. In contrast to the expectations, the overall detachment rate decreased rapidly to a nearly stable level. Correlations available from literature were not able to describe this phenomenon. Concepts were formulated which can describe the observations from this study. Research under dynamic conditions and careful monitoring of the biofilm surface area and biofilm morphology are necessary to elucidate and discriminate biofilm detachment mechanisms. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...