Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 48 (1997), S. 289-296 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Biological phosphate removal has become a reliable and well-understood process for wastewater treatment. This review describes the historical development of the process and the most important microbiological and process-engineering aspects. From a microbiological point of view, the role of␣poly(hydroxyalkanoates) as storage material in a dynamic process and the use of polyphosphate as an energy reserve are the most important findings. From a process-engineering point of view, the study of biological phosphate removal has shown that highly complex biological processes can be designed and controlled, provided that the importance of the prevailing microbiological ecological processes is recognised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract There are two types of microbial populations described in the literature as being capable of anaerobic storage of acetic acid in activated-sludge processes: the polyphosphate-accumulating organisms (PAO) and the glycogen-accumulating non-polyphosphate organisms (GAO). Both groups use the conversion of glycogen to poly-hydroxyalkanoate to produce ATP and NADH; however, the first group can also produce ATP from polyphosphate (poly-P). No representative pure cultures are available from either group. The question arises: is the observed activity of GAO due to PAO that are depleted in poly-P ? In this study, using a laboratory sequencing batch reactor containing an enriched culture, the ability of the enriched PAO to utilize organic substrate (acetate) anaerobically was investigated under conditions of poly-P limitation and surplus glycogen content of the biomass. This study showed clearly that, under these conditions, almost no acetate was taken up. Furthermore, this strongly suggests that PAO can not use glycogen conversion to poly-hydroxyalkanoate as the sole energy source under anaerobic conditions, which seems to be the restricted to a separate group of GAO. On the basis of the results and literature data, an improved scheme for the anaerobic acetate accumulation is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 595-608 
    ISSN: 0006-3592
    Keywords: biofilm ; aerobic waste water treatment ; airlift reactor ; waste water ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, the conditions for aerobic biofilm formation on suspended particles, the dynamics of biofilm formation, and the biomass production during the start-up of a Biofilm Airlift Suspension reactor (BAS reactor) have been studied. The dynamics of biofilm formation during start up in the biofilm airlift suspension reactor follows three consecutive stages: bare carrier, microcolonies or patchy biofilms on the carrier, and biofilms completely covering the carrier. The effect of hydraulic retention time and of substrate loading rate on the formation of biofilms were investigated. To obtain in a BAS reactor a high biomass concentration and predominantly continuous biofilms, which completely surround the carrier, the hydraulic retention time must be shorter than the inverse of the maximum growth rate of the suspended bacteria. At longer hydraulic retention times, a low amount of attached biomass can be present on the carrier material as patchy biofilms. During the start-up at short hydraulic retention times the bare carrier concentration decreases, the amount of biomass per biofilm particle remains constant, and biomass increase in the reactor is due to increasing numbers of biofilm particles. The substrate surface loading rate has effect only on the amount of biomass on the biofilm particle. A higher surface load leads to a thicker biofilm.A strong nonlinear increase of the concentration of attached biomass in time was observed. This can be explained by a decreased abrasion of the biofilm particles due to the decreasing concentration of bare carriers. The detachment rate per biofilm area during the start-up is independent of the substrate loading rate, but depends strongly upon the bare carrier concentration.The Pirt-maintenance concept is applicable to BAS reactors. Surplus biomass production is diminished at high biomass concentrations. The average maximal yield of biomass on substrate during the experiments presented in this article was 0.44 ± 0.08 C-mol/C-mol, the maintenance value 0.019 ± 0.012 C-mol/(C-mol h). The lowest actual biomass yield measured in this study was 0.15 C-mol/C-mol. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 837-848 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; metabolic models ; stoichiometry ; polyphosphate ; poly-β-hydroxybutyrate ; glycogen ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the aerobic phase of the biological phosphorus removal process, poly-β-hydroxybutyrate, produced during anaerobic conditions, is used for cell growth, phosphate uptake, and glycogen formation. A metabolic model of this process has been developed. The yields for growth, polyphosphate and glycogen formation are quantified using the coupling of all these conversions to the oxygen consumption. The uptake of phosphate and storage as polyphosphate is shown to have a direct effect on the observed oxygen consumption in the aerobic phase. The overall energy requirements for the P-metabolism are substantial: 25% of the acetate consumed during anaerobic conditions and 60% of the oxygen consumptions is used for the synthesis of polyphosphate and glycogen. © 1994 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 461-470 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; metabolic model ; stoichiometry ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In the anaerobic phase of a biological phosphorus removal process, acetate is taken up and converted to PHB utilizing both energy generated in the degradation of polyphosphate to phosphate, which is released, and energy generated in the conversion of glycogen to poly-β-hydroxy butyrate (PHB). The phosphate/acetate ratio cannot be considered a metabolic constant, because the energy requirement for the uptake of acetate is strongly influenced by the pH value. The observed phosphate/acetate ratio shows a variation of 0.25 to 0.75 P-mol/C-mol in a pH range of 5.5 to 8.5. It is shown that stored glycogen takes part in the metabolism to provide reduction equivalents and energy for the conversion of acetate to PHB. A structured metabolic model, based on glycogen as the source of the reduction equivalents in the anaerobic phase and the effect of the pH on the energy requirement of the uptake of acetate, is developed. The model explains the experimental results satisfactorily. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 194-204 
    ISSN: 0006-3592
    Keywords: biofilm ; biofilm reactors ; structure ; heterogeneity ; kinetics ; modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A rotating annular reactor (Roto Torque) was used for qualitative and quantitative studied on biofilm heterogeneity. In contrast to the classic image of biofilms as smooth, homogeneous layers of biomass on a substratum, studies using various pure and mixed cultures consistently revealed more-dimensional structures that resembled dunes and ridges, among others. These heterogeneities were categorized and their underlying causes analyzed. Contrary to expectations, motility of the microorganisms not a decisive factor in determining biofilm homogeneity. Small Variations in substratum geometry homogeneity. Small variations in substratum geometry and flow patterns were clearly reflected in the biofilm pattern. Nonhomogeneous flow and shear patterns in the reactor, together with inadequate mixing resulted in significant, position-dependent differences in surface growth. It was therefore not possible to take representative samples of the attached biomass. Like many other types of reactors, the Roto Torque reactor is valuable for qualitative and morphological biofilm experiments but less suitable for quantitative physiological and kinetics studies using attached microorganisms. © 1994 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 277-287 
    ISSN: 0006-3592
    Keywords: phosphorus removal ; biological ; kinetics ; metabolic model ; polyphosphate ; PHB ; glycogen ; batch reactor, sequenced ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A structured metabolic model is developed that describes the stoichiometry and kinetics of the biological P removal process. In this approach all relevant metabolic reactions underlying the metabolism, considering also components like adenosine triphosphate (ATP) and nic-otinamide-adenine dinucleotide (NADH2) are describedbased on biochemical pathways. As a consequence of the relations between the stoichiometry of the metabolic reactions and the reaction rates of components, the required number of kinetic relations to describe the process is reduced. The model describes the dynamics of the storage compounds which are considered separately from the active biomass. The model was validated in experiments at a constant sludge retention time of 8 days, over the anaerobic and aerobic phases in which the external oncentrations as well as the internal fractions of the relevant components involved in the P-removal process were monitored. These measurements include dissolved acetate, phosphate, and ammonium; oxygen consumption; poly-β-hydroxybutyrate (PHB); glycogen; and active biomass. The model satisfactorily describes the dynamic behavior of all components during the anaerobicand aerobic phases.© 1995 John Wiley & Sons, Inc
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 585-595 
    ISSN: 0006-3592
    Keywords: biofilm ; wastewater treatment ; airlift reactor ; nitrification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kgN · m-3 · d-1 at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. © 1995 John Wiley & Sons Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 627-635 
    ISSN: 0006-3592
    Keywords: airlift reactor ; biofilm ; hydrodynamics ; mass transfer ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The hydrodynamics and mass transfer, specifically the effects of gas velocity and the presence and type of solids on the gas hold-up and volumetric mass transfer coefficient, were studied on a lab-scale airlift reactor with internal draft tube. Basalt particles and biofilm-coated particles were used as solid phase. Three distinct flow regimes were observed with increasing gas flow rate. The influence of the solid phase on the hydrodynamics was a peculiar characteristic of the regimes. The volumetric mass transfer coefficient was found to decrease with increasing solid loading and particle size. This could be predominantly related to the influence that the solid has on gas hold-up. The ratio between gas hold-up and volumetric mass transfer coefficient was found to be independent of solid loading, size, or density, and it was proven that the presence of solids in airlift reactors lowers the number of gas bubbles without changing their size. To evaluate scale effects, experimental results were compared with theoretical and empirical models proposed for similar systems. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 627-635, 1998.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1139-1154 
    ISSN: 0006-3592
    Keywords: auto- and heterotrophic growth ; biomass yield ; Gibbs energy disipation ; heat production ; thermodynamic efficiency ; second law of thermodynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: On the basis of the estimated Gibbs energy dissipation per C-mil biomass produced and a convenient black box description of microbial growth, a general equation for the calculation of the yield of biomass on electron donor has been obtained. This black box model defines four formal electron donating reactions for biomass, carbon source, electron donor, and electron acceptor. The proposed description leads to a simple equation which gives the biomass yield on electron donor for chemotrophic growth systems under carbon and energy limitation for which biomass is the only anabolic product. The variables involved are the degrees of reduction and the Gibbs energy characteristics of the four compounds, and the required Gibbs energy dissipation per C-mol produced of biomass. It appears that biomass yields on electron donor for auto- and heterotrophic growth under aerobic, denitrifying, and fermentative conditions can be estimated with 10-15% error in a range of YDX-values of 0.01-0.80 C-mol/(C)-mol electron donor. Also, simple regularities in the Gibbs energy and enthalpy of organic substrates are found. Furthermore, simple relations are derived to calculate the thermodynamic maximal biomass yield, conditions required for growth to occur, heat production, biomass yield on electron acceptor, and anaerobic product yield. Finally a new definition of thermodynamic efficiency is derived. © 1992 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...