Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biomechanical properties  (4)
  • Polymer and Materials Science  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 30 (1992), S. 293-297 
    ISSN: 0887-6266
    Keywords: poly(p-phenylene) from organometallic polymerization, crystal structure of ; crystal structure of poly(p-phenylene) from organometallic preparation ; X-ray diffraction of organometallically produced poly(p-phenylene) ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The two-dimensional crystal structure of poly(p-phenylene) is investigated by linkedatom Rietveld analysis of the x-ray diffraction powder profile. Two molecular chains are packed in a rectangular pgg unit cell (a = 0.779 nm; b = 0.551 nm) with a paracrystalline shift distortion along the chain axis. The molecular conformation is not rigidly planar; rotations between adjacent phenyl-ring planes in a molecule alternate with an angle of about 20°. The setting angle between the mean molecular plane and the a axis is 55.5°.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 25 (1987), S. 631-637 
    ISSN: 1741-0444
    Keywords: Biomechanical impedance ; Biomechanical properties ; Impedance ; Living body structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract A physical model for biomechanical impedance has already been proposed. This model is characterised by three impedance spectra: soft, intermediate and hard pattern. An impedance spectrum of the body surface represents mostly the soft pattern, The formative mechanisms of all three patterns have been unsolved until now. Because the physical model is expressed by experimental equations, its theoretical background is not apparent. In the paper a simulating material (simulator) is used, whose tactility is not unlike human skin, and the formative mechanism of biomechanical impedance is revealed through experiments on the simulator under various measuring conditions. The influences of the measuring circumstances, living body structure and physical constants of the body tissues on the experimental equations of the physical model are fully discussed. The formative mechanism of biomechanical impedance which represents the physical model is explained in terms of an equivalent mass, a dynamic equivalent stiffness, a dynamic viscosity and a composite characteristic. The dependence between body parts from which the measurements are taken and soft, intermediate and hard patterns are demonstrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 27 (1989), S. 75-81 
    ISSN: 1741-0444
    Keywords: Automatic diagnosis ; Biomechanical properties ; Mechanical mobility ; MT figure ; Periodontium ; Tooth mobility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Tooth mobility examination is important in planning dental treatment, as it may give an indication of alveolar bone loss and the condition of the periodontal ligament. In clinical dental diagnosis a manual tooth mobility examination is useful. However, its determination of tooth mobility is subjective and depends on the skill and experience of the clinician. The authors have previously reported on a device for measuring the biomechanical properties of human periodontium using an impedance head. Using this device, the mechanical mobility of periodontium can be measured and the mechanical parameters of the periodontal physical model are obtained. Tooth mobility is defined objectively on the basis of discriminant scores of mechanical parameters, and a mobility triangle (MT) figure is drawn as a record for visual interpretation. The paper describes the validation of the mechanical mobility measurements and their interpretation using mobility parameters and a personal computer to produce a mobility triangle figure. The method is compared favourably with clinical mobility measurement. The relationship of the model to underlying pathology is tested by measurements performed on various tooth model systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 24 (1986), S. 493-498 
    ISSN: 1741-0444
    Keywords: Biomechanical impedance ; Biomechanical properties ; Impedance ; Modelling of human body
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract New experimental modelling of biomechanical impedance is proposed. The parameters which express the impedance characteristics are simply determined by impedance measurement. Audiofrequencies below about 1000 Hz and comparatively lower preloads (below about 6370 kg m−2) are chosen as the research domain. This model, however, can express wide range of body surface impedance not only in soft but also in stiff and intermediate tissues. It will never introduce the impracticably ideal conditions found in the mathematcial models proposed to date. Furthermore the parameters which express the model cannot be determined by impedance measurement alone. The impedance Z(jw) is expressed in two parts: the impedance Z1 (jw) at a higher frequency including a complex mass and the impedance Z2(jw) at a lower frequency including a complex compliance of Cole-Cole’s type. Z1(jw) is the property of body fluid and Z2(jw) is that of a viscoelastic body.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 21 (1983), S. 778-780 
    ISSN: 1741-0444
    Keywords: Biomechanical impedance ; Biomechanical properties ; Impedance head
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 61 (1996), S. 1957-1970 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The bacterial copolyesters poly(3-hydroxybutyrate-co-3-hydroxyvalerate) have been successfully commercialized by ICI and are currently being distributed worldwide. Because of their bacterial origin, they are completely biodegradable. This has opened up numerous opportunities to develop new environmentally friendly products. The solid-state extrusion of a series of biodegradable copolyesters (P(3HB-3HV)) was performed in our laboratory with the aim of gaining fundamental understanding about their processability below their melting temperatures. The extrudability windows were found to span the temperature range from 135 to 150°C, depending on the composition of the samples under our experimental setup. The solid-state extrudates were found to exhibit an extra melting endotherm about 15-20°C above their normal melting temperature. This high temperature melting peak increasingly became dominant at lower extrusion temperatures. Wide angle X-ray diffraction studies did not indicate any phase change that might be responsible for this increase in the melting point. Contrary to the expectations, the solid-state extruded samples did not show significant chain orientation along the extrusion direction. This might be a result of fracture of the mass in the barrel into smaller pieces and their randomization during the course of their passage through the die. When the extrusion temperature was raised closer to the melting temperature, the quality of the extrudates was improved, and this was reflected in improvement of their mechanical properties. © 1996 John Wiley & Sons, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Polymer Science: Macromolecular Reviews 13 (1978), S. 161-218 
    ISSN: 0076-2083
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 47 (1993), S. 2207-2216 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: To improve oil and water repellency, fluorine-containing block copolymers, which were composed of methyl methacrylate (MMA), glycidyl methacrylate (GMA), and 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate (PFA), were blended with an epoxy resin. It was expected that a glycidyl group would mesh with the epoxy resin by primary bonding, and the low surface energy fluorocarbon segment would absorb and orient to the exterior to fluorinate the surface. X-ray photoelectron spectroscopy, contact angle, and peel strength of pressure-sensitive adhesives for modified epoxy resin surface were determined. The amount of fluorine obtained via angular-dependent ESCA investigation in the modified resin surfaces increased with the shallowing of the sampling depth. With increasing modifier content, the amount of fluorine in the modified resin surface layer increased, and the critical surface tension of modified resin surfaces and the peel strength of a silicone pressuresensitive adhesive affixed to the modified epoxy resin, decreased. A considerable amount of fluorine in the resin surface modified with GMA-containing block copolymers remained after Soxhlet extraction, whereas in the surface modified with copolymer without GMA, more fluorine was extracted. It was extracted. It was shown that these copolymers were good surface modifiers to improve oil and water repellency. © 1993 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...