Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Capacity measurement  (1)
  • Chain, light  (1)
  • Depolarization  (1)
  • 1
    ISSN: 0014-5793
    Keywords: Botulinum A toxin ; Chain, heavy ; Chain, light ; Chromaffin cell, permeabilized ; Exocytosis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Chromaffin cells ; Clostridial toxins Electroporation ; Exocytosis ; Capacity measurement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Tetanus and botulinum A neurotoxins were introduced into the cytosol of chromaffin cells by means of an electric field in which the plasma membrane is forced to form pores of approximately 1 μm at the sites facing the electrodes. As demonstrated by electron microscopy, both [125I] and gold-labelled tetanus toxin (TeTx) diffuse through these transient openings. Dichain TeTx, with its light chain linked to the heavy chain by means of a disulfide bond, causes the block of exocytosis to develop more slowly than does the purified light chain. The disulfide bonds, which in both toxins hold the subunits together, were cleaved by the intrinsic thioredoxin-reductase system. Single chain TeTx, in which the heavy and light chains are interconnected by an additional peptide bond, was far less effective than dichain TeTx at blocking exocytosis, which indicates that proteolysis is the rate-limiting step. The toxins were degraded further to low-molecular weight fragments which, together with intact toxins and subunits, were released by the cells. The intracellular half-life of [125 I] dichain TeTx was approximately three days. The number of light-chain molecules required to maintain exocytosis block in a single cell, as calculated by two different methods, was less than 10. The long duration of tetanus poisoning may result from the persistence of intracellular toxin due to a scarcity of free cytosolic proteases. This may also hold for the slow recovery from botulism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 330 (1985), S. 77-83 
    ISSN: 1432-1912
    Keywords: Dendrotoxin ; Potassium channel ; Nerve fibre ; Depolarization ; GABA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of dendrotoxin (DTX), a toxic peptide from Dendroaspis angusticeps venom, were studied electrophysiologically on peripheral frog nerve fibres, and biochemically on large synaptosomes from rat brain. 1. On nerve fibres, DTX reduced the amplitude and prolonged the duration of the action potential; even at 0.1 nmol/l DTX produced significant effects. Maximum block of potassium currents occurred at about 30 nmol/l. Turning on of the remaining current was slowed. Reversibility was incomplete. The reduction of potassium currents was between 31% and 85% at 85 nmol/l DTX (n=8). The remainder appeared to be resistant to DTX. Sodium channels were not affected. 2. On large synaptosomes DTX (above 1 nmol/l) produced a slight depolarization, indicated by an outward shift of the lipophilic cation tetraphenylphosphonium, and promoted the release of radioactivity after preloading with [3H] GABA. DTX had similar potency but lower efficacy in this respect than sea anemone toxin II (ATX II). In contrast to the effects of ATX II, those due to DTX were only partially inhibited by tetrodotoxin. The actions of 4-aminopyridine resembled those of DTX, but the latter was about 500 times more potent. The electrophysiological data provide direct evidence for blockade of a potassium channel by DTX. This action is sufficient to explain the biochemical observations, although additional effects on synaptosomes cannot be excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...