Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (4)
  • Sperm polymorphism  (1)
  • Spermatozeugma  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 179 (1984), S. 243-262 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The fine structure of the male reproductive system of the hermaphroditic brittle-star, Amphipholis squamata, has been studied in specimens from both the Pacific coast (Washington) and the Atlantic coast (New Hampshire). Each testis is a small (100-μm) sphere and is attached to the internal wall of the bursa by peritoneal suspensor cells. Occasional flagellated cells are found on the external surface of the testis. The testicular wall of A. squamata is a multilayered structure, similar to that of other ophiuroids, but the hemal sinus is PAS negative in this species. Germinal cells are surrounded throughout their development by the filopodia of interstitial cells. Adjacent interstitial cells are interconnected, and thus form a structural network within the testis. Positionally and functionally, the interstitial cells resemble Sertoli cells; however, their origin, behavior and ultrastructure are different in many ways.Spermatogenesis includes a series of cyclical changes (aspermatogenic phase, proliferative phase, differentiative phase, and evacuative phase). Within a single testis, the resulting production of sperm is in short pulses, but if all 10 testes are taken together, sperm are produced continuously throughout the year. The events of spermiogenesis closely follow those that have been described in other echinoderms. However, we have provided new information on the release of excess cell membranes and the fusion process of mitochondria.The mature spermatozoa of A. squamata are flagellated and motile, and have “primitive” structural features, in spite of the fact that they fertilize the eggs inside the genital bursae. The spermatozoa do not, as was previously thought, enter the bursa by rupture of the adjacent walls. Instead, they are ejaculated through a gonoduct into the rapid incurrent flow of water entering the bursa. The locomotion of the spermatozoa is in eccentric spirals, due to the unusually large angle at which the flagellum is inserted into the base of the sperm.
    Additional Material: 33 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 179 (1977), S. 347-356 
    ISSN: 1432-0878
    Keywords: Nurse cell ; Spermatozeugma ; Ultrastructure ; Mollusca ; Littorina
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Nurse cells develop from diploid cells in the testis. Each cell undergoes a reduction division which leaves the nucleus with half the volume of a normal diploid cell. They send out pseudopodia which form desmosomelike junctions with developing spermatids. The nurse cells detach from the testicular wall, their nuclei degenerate and secretion droplets form in the cytoplasm. The pseudopodia are drawn in as the cytoplasmic secretions swell and the nurse cell becomes spherical. The eupyrene sperm become grouped unilaterally and at this stage are attached to the nurse cell by only the tips of their acrosomes. At maturity the nurse cells with their clumps of attached eupyrene sperm (spermatozeugmata) are released from the testis via ducts into the seminal vesicles, where they are stored prior to copulation. Nurse cells serve similar functions to those of apyrene sperm which are common among the Molluscs. We believe that the nurse cell and apyrene sperm are homologous.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Sperm polymorphism ; Ultrastructure ; Mollusca ; Prosobranchia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The prosobranch Fusitriton oregonensis exhibits an unusual form of sperm polymorphism. The viable, eupyrene sperm are attached in groups of about fifty to worm-shaped, apyrene, carrier sperm. There is a second apyrene sperm, which is lancet-shaped and has a different internal organization than the carrier, but does not transport eupyrene sperm. The eupyrene sperm are filiform (185 μm long), with a conical acrosome, elongate nucleus and midpiece. They contain large stores of glycogen in the principal piece, together with an unusually high proportion of protein. The latter is due to a complex interconnecting system of fibres that supports the tail internally. A distinct annulus is located, characteristically, at the junction between midpiece and principal piece. The carrier sperm has a core of about 112 axonemes that arise from basal bodies in the anterior end and extend through its entire length of 36 μm. The basal bodies have unstriated rootlets that are embedded in a granular cap. Large membrane-bound “yolk bodies” are arranged along the length of the carrier sperm, on either side of the median axonemal core. Dense bodies, which may be indigestible residues formed from the degeneration of the nucleus, are excreted by exocytosis. Individual carrier sperm are capable of “corkscrew” propulsion, resembling that of spirochaetes. The lancet sperm is three times as long as the carrier. The sixteen or so axonemes, which are arranged peripherally like a cage enclosing the cytoplasm, originate from a dense centriolar plate in the anterior end. The cytoplasm is filled with secretions including small yolk granules, dense bodies (also excreted), clear vesicles, and a membranated granular secretion that resembles mucus. The possible functions of the lancet and carrier sperm are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 15 (1986), S. 13-23 
    ISSN: 0148-7280
    Keywords: annulus ; prosobranchia ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: In Nerita picea the proacrosomal granule is formed basally in the early spermatid from one large cisterna of the Golgi body, with which the other Golgi-derived vesicles fuse. After the proacrosomal granule has attached to the plasma membrane and invaginated to form a cup shape, one cisterna of endoplasmic reticulum inserts into the open end and deposits a granular secretion on the inner surface. Subsequently, the proacrosome migrates along the plasma membrane to the apex of the nucleus, but the Golgi body remains basal, as occurs in other archaeogastropods and also many polychaete annelids. However, the final shape and structure of the acrosome is similar to that of mesogastropods. The annulus attaches the distal centriole to the plasma membrane early in spermiogenesis. The production of the flagellum by the distal centriole not only expands the plasma membrane posteriorly but moves the centriolar complex to the nucleus, causing an invagination of the plasma membrane where it is bound by the annulus. During proacrosome migration, the Golgi body secretes a dense tube around the flagellum, and the mitochondria fuse into two spheres at the base of the nucleus. The nuclear plug that closes off the intranuclear canal until this stage rapidly reorganizes itself into two tubes of material inside the canal. The centrioles continue flagellar production, break away from the annulus, and move deep into the intranuclear canal where they fuse together to form the basal body of the sperm. In the maturing spermatid, the two mitochondria fuse into a single sheath that spirals around the flagellum. The annulus does not migrate posteriorly but remains anterior to the midpiece, which is unusual for a filiform sperm. Spermiogenesis in Nerita picea has features in common with both archaeogastropods and mesogastropods but also has some unique features. These observations lend credence to the idea that the Neritidae are a transitional group between Archaeogastropoda and Mesogastropoda.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 7 (1983), S. 19-37 
    ISSN: 0148-7280
    Keywords: spermiogenesis ; centrioles ; Golgi body ; microtubules ; Gastropoda ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Spermiogenesis of the eupyrene sperm in the snail, Fusitriton oregonensis, was studied with light and electron microscopes. Endoplasmic reticulum, which encircles the nucleus in each spermatid, appears to connect with the Golgi body and to interconnect between adjacent spermatids via cytoplasmic bridges. It is suggested that as the Golgi body migrates around the nucleus the endoplasmic reticulum may circulate with it. The alignment of the proacrosome with the nucleus is effected by a 180° rotation of the Golgi body, after which it separates and migrates posteriorly with the residual cytoplasm. Each sperm possesses a well-developed intracellular digestive system as indicated by multivesicular bodies, residual bodies, and myeloid figures. Autophagy begins in the residual cytoplasm before it is released from the middle piece. Microtubules are found outside the nucleus and mitochondria during the final stages of spermiogenesis, when elongation is almost complete. These microtubules appear to be involved in the final shaping and twisting process, in which torsion is locked in the nucleus and the mitochondria spiral around the axoneme. The annulus attaches the distal centriole to the plasma membrane in the early spermatid and as flagellar production begins they move towards the implantation fossa at the base of the nucleus. There are two centrioles in the early spermatid, the distal centriole and procentriole. The small procentriole fuses with the distal centriole in the intranuclear canal to form the centriolar cap of the basal body. This cap is pushed through the end of the nuclear tube and is separated from the subacrosomal space by only the nuclear membranes.
    Additional Material: 31 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 21 (1988), S. 199-212 
    ISSN: 0148-7280
    Keywords: egg envelopes ; polyspermy ; mollusca ; polyplacophora ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Contrary to the widely accepted view that chiton sperm lack acrosomes and that fertilization in this group occurs via a micropyle, we demonstrate here that fertilization in Tonicella lineata occurs by acrosome-mediated sperm-egg fusion. The acrosome is a small vesicle containing two granules located at the tip of the sperm. The eggs have an elaborate hull (=chorion), which is formed into cupules that remain covered by follicle cells until maturity. When dissected ripe eggs were exposed to sperm in vitro, the sperm were attracted only to open cupules, inside which they swam through one of seven channels to the base where they penetrated the hull. The acrosome fired on contact with, or in, the hull, and during passage through it the apical granule was exhausted while the basal granule was exposed. If sperm contacted follicle cells between the cupules the acrosome did not react. The vitelline layer beneath the hull contains pores arranged in a regular pattern. Embedded in the base of each pore is an egg microvillus. Having penetrated the hull the sperm anterior filament located a pore and fused with the tip of the egg microvillus projecting into it. This created a membranous tube, through which the sperm nucleus was injected into the egg. The egg membrane appeared to be raised up into a small fertilization cone around the penetrating sperm, the vitelline layer became slightly elevated, and some cortical granules were released by exocytosis.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...