Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mossy fibers  (7)
  • Granule cells  (3)
  • Cerebellar nuclei  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 3 (1967), S. 58-80 
    ISSN: 1432-1106
    Keywords: Mossy fibres ; Cerebellar cortex ; Golgi cells ; Granule cells ; Purkinje cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Potential fields and unitary spikes in the cat cerebellar cortex were generated specifically by mossy fibre volleys and recorded by means of microelectrodes. The mossy fibres were excited by trans-folial (T. F.) stimulation which was compared with juxtafastigial (J.F.) stimulation. Both were conditioned by local stimuli of parallel fibres. 2. In the granular layer, an incoming mossy fibre volley evoked a small diphasic potential (P1 N1) and about 0.4 msec later a second negative wave (N2) due to the excitatory synaptic current generated by synapses of mossy fibres with granule cells and Golgi cells. In the typical configuration the N2 wave usually had a superimposed double spike potential, which is due to impulses discharged first by Golgi cells and then, about 0.5 msec later, by granule cells. 3. The transmission of impulses along the perpendicular axons of the granule cells and thence along the parallel fibres gave the fairly sharp positive potential (P2) in the granular layer, and simultaneously the negative wave (N3) in the molecular layer. The parallel fibre impulses, in turn, synaptically excited and so evoked local responses and action potentials in the dendrites of Purkinje and other cells, which aided in the production of the latter part of the N3 wave. 4. The impulses in the Purkinje cell dendrites propagate into the granular layer via the Purkinje cell somata and axons so producing the negative wave (N4) in the Purkinje and the granular layer. 5. The late and prolonged positive wave (P3) may be attributable to the deep active sources produced by postsynaptic inhibition of Purkinje cells and of granule cells by basket and Golgi cells respectively. 6. There has been good correlation between the physiological findings and the anatomical structures of the various types of cells and the synaptic connections, even to the synapses of mossy fibres on Golgi cell dendrites that have been recently described by HÁmori and SzentÁgothai.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 3 (1967), S. 81-94 
    ISSN: 1432-1106
    Keywords: Cerebellar inhibition ; Golgi cells ; Basket cells ; Purkinje cells ; Granule cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. There has been a comparative study of two kinds of inhibition in the cerebellar cortex: basket cell inhibition of Purkinje cells; and Golgi cell inhibition of granule cells. These inhibitory actions were assayed by the degree of inhibition of the potential waves that juxta-fastigial (J.F.) stimulation evoked in the granular or molecular layers: basket cell inhibition by the N1 wave generated by antidromic invasion of Purkinje cells; and Golgi cell inhibition of the N3 or P2 waves evoked by the mossy fibre volley in the molecular and granular layers respectively. 2. The Golgi cell inhibition produced by a parallel fibre volley (LOC stimulation) extended transversely for no more than 200 μ on either side of the narrow beam of the excited parallel fibres, whereas the spread of basket cell inhibition was much larger — to as far as 1 mm. 3. When activated by the on-beam LOC stimulation, the Golgi cell and the basket cell inhibition showed much the same threshold of the stimulation. The off-beam LOC stimulation produced only the basket cell inhibition which is in conformity with the different transverse distributions described in (2) above. 4. When evoked by J. F. or trans-folial (T. F.) stimulation, the Golgi cell inhibition had a much lower threshold than the basket cell inhibition. It is suggested that in part at least this is attributable to the direct synaptic connection from mossy fibres to Golgi cells. 5. The Golgi cell inhibition elicited by the LOC stimulation showed a relatively short time course, the maximum being attained by about 10 msec, after which there was an approximately exponential decrease so that the total duration was only about 100 msec. On the other hand, the basket cell inhibition had a much slower time course, maximum being attained at a latency of 20 to 40 msec, the total duration being even in excess of 200 msec. Suggestions are made with respect to the factors responsible for the slow time course of the basket cell inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Cerebellum ; Evoked responses ; Mossy fibers ; Climbing fibers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses were evoked in the anterior lobe of the cerebellum by volleys in group I and II fibers of forelimb and hindlimb nerves — cutaneous, muscular, joint and fascial. These responses have been observed along microelectrode tracks that traverse the whole depth of the anterior lobe. These tracks have been identified in histological sections, and the recording sites along these tracks have been determined. It has been shown that there are many distinguishing features for the responses produced by the two types of afferent input to the cerebellum: climbing fibers and mossy fibers. The depth profiles are of particular importance in the differentiation of the CF and MF responses, and they correspond to those already determined for the exposed surface areas of the cerebellar cortex. As would be expected from the distribution of synapses by the CF fibers to the Purkinje cell dendrites, there is a maximum extracellular negativity deep in the molecular layer with sources superficial and deep thereto. In contrast, the mossy fiber input produces a powerful synaptic excitation in the granular layer, which is recorded there as a negative wave (N2). The mossy fiber input by sequential relay also produces a negative wave (N3) in the molecular layer. This wave is distinguished from the CF-evoked negative wave because it is not reversed in the fissura and the adjacent superficial molecular layer. An important distinguishing feature of the MF- and CF-evoked responses is that the latencies of the former are shorter by 6–12 msec for forelimb nerves and by 9–15 msec for hindlimb nerves. It is thus possible to measure the sizes of the MF and CF responses in the same traces. Another distinguishing feature is the failure of the CF responses with stimulus frequencies of 5–15/sec, whereas the MF-evoked potentials are well maintained above 15/sec. Also CF-evoked responses show much more size and latency variance than the MF-evoked responses, and often the facilitation of two or three volleys is required in order to evoke a stable CF response. By utilizing these various tests it is always possible to distinguish between the CF- and the MF-evoked responses recorded along the microelectrode tracks in the anterior lobe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Cerebellum ; Mossy fibers ; Climbing fibers ; Topography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Systematic examination has been made of the potentials evoked in the ipsilateral anterior lobe by single Group II volleys in different branches of cutaneous nerves to the fore-paw and hind-paw of the cat. Field potentials evoked by the mossy and climbing fiber inputs have been recorded along microelectrode tracks arranged so that there has been a comprehensive study through the whole branching foliated structure. In a previous investigation it was shown that large cutaneous nerves of the forelimb and hindlimb have wide fields of action for both the mossy fiber and climbing fiber inputs. In this present investigation it was found that small cutaneous nerves have more localized distributions within these wide fields. This discriminative distribution is exhibited for Group II volleys in the subdivisions of the nerves providing innervation to the palmar and plantar foot pads. It thus appears from this somatotopic investigation that there are pathways to the cerebellum sufficiently specific to give information about the part of the foot that is being stimulated in natural movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Cerebellum ; Cutaneous mechanoreceptors ; Mossy fibers ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper gives an account of single mossy fiber responses when three types of mechanical stimulation are applied to the forefoot and hindfoot of the cat which is either decerebrate and unanesthetized or lightly anesthetized by pentothal or chloralose. The mechanical stimuli were applied either to footpads (brief pulses, taps, or longer square pulses or ramps) or to the hairy skin by air jets. Recording of single mossy fibers was extracellular by glass microelectrodes that were inserted into the granular layer of the cerebellar cortex or the subjacent white matter. As described in previous papers computer averaging techniques usually of 64 responses have been employed to enhance reliability. Taps evoked pure excitatory responses from many mossy fibers, which were usually brief high frequency bursts resembling those evoked by nerve volleys. Usually the threshold displacement was less than 0.2 mm and thresholds as low as 0.01 mm were observed. There were often considerable differences in the intensities of responses from different pads of the same foot. Successive pulses of mechanical stimulation evoked mossy fiber responses of diminished intensity. Longer mechanical stimuli with square or ramp onsets evoked various admixtures of phasic and tonic responses. Hair stimulation was often a very effective excitant, the receptive field for a single mossy fiber usually covering a considerable area of foot and leg. Taps and pressure to the pads were also effective in inhibiting the background discharge of some mossy fibers, and admixtures of excitatory and inhibitory actions were observed. The results are discussed in relationship to the discharges evoked in primary afferent fibers by cutaneous mechanoreceptor stimulation. They provide an intermediate stage of information between mechanoreceptor stimulation and the response of Purkyně cells as described in the next paper.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 19 (1974), S. 100-118 
    ISSN: 1432-1106
    Keywords: Cerebellar nuclei ; Fastigial neurones ; Somatotopy ; Cerebellar function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The somatotopic inputs into fastigial cells have been studied in relation to cutaneous mechanoreceptors of forelimb and hindlimb. Some fastigial cells were very discriminative, not only in respect of the limb, but also to restricted areas of hairy skin and related toe pads. Others were much less so, forelimb and hindlimb cutaneous receptors evoking similar excitatory-inhibitory responses. In addition, from the contralateral hindlimb, responses were evoked which were comparable with those from the ipsilateral limb. Somatotopic diagrams have been constructed which show in four experiments the sites of fastigial cells in the parasagittal plane of the microelectrode tracks. For each experiment four separate plottings give a comparison of the sizes of responses evoked for forelimb and hindlimb: excitation from nerve volleys; inhibition from nerve volleys; excitation from pad taps; inhibition from pad taps. In this way it is shown that fastigial cells with similar somatotopic relations often occur in clusters, particularly when assessed by their inhibitory responses. Since fastigial inhibition is largely due to Purkyně cells, there is an attempt to correlate the somatotopic relations of Purkyně cells with the somatotopy of fastigial cell inhibition. The excitation of fastigial cells exhibits less somatotopic discrimination, which conforms with the poor somatotopic discrimination of cells of the lateral reticular nucleus. In a final discussion there is consideration of two principal projections from the vermis of the anterior lobe: Purkyně cells inhibiting Deiters neur; Purkyně cells inhibiting fastigial cells which in turn monosynaptically excite Deiters neurones, the inhibition of Deiters neurones being then by disfacilitation. The degree of forelimb-hindlimb convergence in these pathways is reconsidered and is diagrammatically illustrated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Cerebellum ; Cutaneous mechanoreceptors ; Mossy fibers ; Climbing fibers ; Integration ; Purkyně cell groups
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The preceding two papers gave accounts of mossy fiber (MF) or of climbing fiber (CF) inputs to Purkyně cells under conditions where the other input was depressed by the experimental procedure. By utilizing either chloralose anesthesia or decerebration with sparing of the pyramidal tracts it has been possible to study the convergence of MF and CF inputs onto single Purkyně cells. The stimulation of cutaneous mechanoreceptors, the recording procedures for unitary Purkyně cell discharges and the computer averaging techniques were as previously described. Testing by taps to the footpads evoked a combined MF and CF response more commonly than either response alone, and often both inputs were very effective. There was a tendency for such phasic CF responses to be more frequently observed than the tonic responses to pad pressure, but such responses did occur. Purkyně cells were located by the usual procedure along the microelectrode tracks later identified in serial sections. Those cells activated by the fast MF inputs from the pad receptors were found to be closely associated in groups or colonies. The delayed MF inputs probably via spino-reticular pathways were more widely dispersed. The topographical relationships of these colonies are displayed on maps of the unfolded cerebellar cortex for lobules II to VI of both vermis and pars intermedia. In general these distributions of Purkyně cells activated from forefoot and hindfoot appear as islands in the larger fields that degeneration procedures exhibit for the cuneocerebellar and dorsal spinocerebellar tracts respectively. The CF inputs from the footpads also project to these same colonies, so that there are conjoint MF and CF colonies. The several modalities of the cutaneous mechanoreceptors of the forefoot or hindfoot often participate in the receptive fields of individual Purkyně cells. Such a field may be restricted to one or other side of the foot, all tested cutaneous mechanoreceptors then sharing approximately in the same restriction. Finally it is shown how these experimental findings relate to the theories of cerebellar function, particularly to the dynamic loop hypothesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Cerebellum ; Purkyně cell discharges ; Mossy fibers ; Climbing fibers ; Afferent volleys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Impulses discharged by Purkyně cells provide the only output from the cerebellar cortex. Usually the Purkyně cells can be identified with certainty because they alone respond by the brief bursting discharge generated by climbing fiber (CF) impulses, as well as by the ubiquitous simple spikes. The discharges from single Purkyně cells in the anterior lobe have been studied in lightly anesthetized and in decerebrate unanesthetized cats. All of our 275 identified cells had an average background discharge frequency in the range of 5/sec to 100/sec. The discharge was increased and/or depressed by afferent volleys from a number of limb nerves. In addition there was usually a slow rate of CF-evoked spike bursts at 0.5–2/sec, and many afferent inputs also evoked CF responses. The firing patterns of Purkyně cells are often very irregular, but by the technique of computer averaging of many sweeps, usually 128, the responses of the cell under observation have been accurately and reliably displayed as post-stimulus time histograms and their cumulative frequency distributions. In this manner the distinctive features of the responses evoked by the mossy fiber and climbing fiber inputs have been determined under a wide variety of conditions. The most direct mossy fiber responses — excitatory or inhibitory — had a shorter latency than the climbing fiber responses, usually by more than 10 msec. However, there were also later responses to both types of input. Repetitive afferent volleys were used to study facilitation of the mossy fiber responses at short intervals, and the effectiveness of repetition on both kinds of inputs at slower frequencies. Repetitive mossy fiber inputs apparently can give a maintained enhancement or depression of the Purkyně cell discharge.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1106
    Keywords: Cerebellum ; Cutaneous mechanoreceptors ; Mossy fibers ; Purkyně cells ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper gives an account of single Purkyně cell responses when three types of mechanical stimulation, as in the previous paper, are applied to the forefoot and hindfoot of the decerebrate unanesthetized cat. Attention was concentrated on the effects of brief mechanical pulses to the footpad. Recording was extracellular by glass microelectrodes and special precautions were taken in identifying the spike responses as being due to a single Purkyně cell and in securing its effective isolation for our computer averaging techniques, as described in the previous papers. All Purkyně cells were in the ipsilateral anterior lobe in the lateral vermis or pars intermedia of lobules III, IV, V, except for a few recordings in the extreme rostral zone of lobule VI. Mechanical pulses or taps evoked responses from many Purkyně cells which were pure excitatory, pure inhibitory or admixtures thereof. The latencies of onset were usually in the range of 12–20 msec from the onset of the tap, which tends to be a little longer than the observed latencies for mossy fiber responses described in the preceding paper. There was often a considerable difference in the sizes of the responses evoked from different pads of the same foot, and the usual threshold for response was below 0.2 mm amplitude. Durations of responses were usually 10–20 msec for excitation and 50–100 msec for inhibition. Pressure pulses to the central foot pads of 2 sec duration evoked a wide variety of responses: brief phasic at “on” and “off” that could be admixtures of excitation and inhibition; almost pure tonic excitations or inhibitions that were well maintained during the 2 sec; phasic-tonic responses in various relative degrees. Usually 500 g was maximally effective and the threshold was below 100 g. Hair receptors were stimulated preferentially by brief air jets, there being brief excitatory or inhibitory responses much as with taps, but with rather longer latency. The effective area was usually fairly extensive over the hairy skin of the foot. In general the effects on Purkyně cells by cutaneous mechanoreceptors acting via mossy fibers were in accord with the mossy fiber responses reported in the preceding paper and with the well-known excitatory and inhibitory effects that are exerted by mossy fiber inputs on Purkyně cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1106
    Keywords: Cerebellum ; Mossy fibers ; Granule cells ; Afferent volleys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper is the first of a series in which the processing of information in the cerebellum has been studied by investigating the effects that known inputs from limb nerves produce on the unitary spike potentials in the cerebellar cortex. These spikes have been recorded extracellularly at all depths along microelectrode tracks in the 5th, 4th and 3rd lobules of the anterior lobe in the lateral vermis or in the pars intermedia. These units have a background frequency of discharge, often very irregular, and computer averaging techniques have been employed in order to derive reliable information on the time course and intensity of the excitatory and/or inhibitory actions produced by the input against this background. Most of the spike responses recorded from the granular layer fall into two classes, one characteristic of impulses in mossy fibers, and the other of impulse discharges from granule cells. Both in the spontaneous background and in the response to afferent volleys in limb nerves the mossy fibers exhibit a performance in close accord with that described for the discharges up the spino-cerebellar tracts. The short latency of 6–9 msec for hindlimb stimuli and the high frequency burst response of 2–4 impulses are characteristic. The mossy fibers displayed a wide variety of responses to the wide range of testing inputs, there being various combinations of excitatory and inhibitory responses and also delayed excitatory actions, all of which must be assumed to be reflections of synaptic influences on the cells of origin of the mossy fibers in the spinal cord. Granule cells have a longer latency by several milliseconds, 9–20 msec for the hindlimb, and a slower frequency in their burst response which tended to be longer and more irregular. The small unitary spike potentials are more difficult to isolate. Also with repetitive stimulation granule cells are more readily depressed than are mossy fibers. Usually a granule cell exhibits a wider range of response to the various cutaneous and muscular afferents of a limb. Both mossy fibers and granule cells may display reciprocal responses to volleys from muscle nerves to antagonistic muscles. This attempt to define properties of the mossy fiber and granule cell spike potentials should help in their identification in future investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...