Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Structural chemistry 6 (1995), S. 287-292 
    ISSN: 1572-9001
    Keywords: CH4 trimer ; symmetry-adapted perturbation theory ; nonadditive three-body effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The interaction energy for the cyclic CH4 trimer is studied in terms of symmetry-adapted perturbation theory. The interaction energy around the van der Waals minimum is dominated by attractive dispersion energy, and the repulsive contribution at the smaller angle region is due to the first-order exchange energy. The total interaction energy is approximated by additive two-body components, because of a mutual cancellation between nonadditive three-body ones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 26 (1996), S. 72-80 
    ISSN: 0887-3585
    Keywords: phage 434 Cro protein ; phage 434 repressor protein ; helix-turn-helix motif ; normal mode analysis ; molecular mechanics ; protein conformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Two DNA binding proteins, Cro and the amino-terminal domain of the repressor of bacteriophage 434 (434 Cro and 434 repressor) that regulate gene expression and contain a helix-turn-helix (HTH) motif responsible for their site-specific DNA recognition adopt very similar three-dimensional structures when compared to each other. To reveal structural differences between these two similar proteins, their dynamic structures, as examined by normal mode analysis, are compared in this paper. Two kinds of structural data, one for the monomer and the other for a complex with DNA, for each protein, are used in the analyses. From a comparison between the monomers it is found that the interactions of Ala-24 in 434 Cro or Val-24 in 434 repressor, both located in the HTH motif, with residues 44, 47, 48, and 51 located in the domain facing the motif, and the interactions between residues 17, 18, 28, and 32, located in the HTH motif, cause significant differences in the correlative motions of these residues. From the comparison between the monomer and the complex with DNA for each protein, it was found that the first helix in the HTH motif is distorted in the complex form. While the residues in the HTH motif in 434 Cro have relatively larger positive correlation coefficients of motions with other residues within the HTH motif, such correlations are not large in the HTH motif of 434 repressor. It is suggestive to their specificity because the 434 repressor is less specific than 434 Cro. Although a structural comparison of proteins has been performed mainly from a static or geometrical point of view, this study demonstrates that the comparison from a dynamic point of view, using the normal mode analysis, is useful and convenient to explore a difference that is difficult to find only from a geometrical point of view, especially for proteins very similar in structure. © 1996 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 70 (1998), S. 491-501 
    ISSN: 0020-7608
    Keywords: positron-molecule complex ; positron affinity ; full variational molecular orbital method ; nuclear wave function ; orbital relaxation ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Optimal Gaussian-type orbital (GTO) basis sets of positron and electron in positron-molecule complexes are proposed by using the full variational treatment of molecular orbital (FVMO) method. The analytical expression for the energy gradient with respect to parameters of positronic and electronic GTO such as the orbital exponents, the orbital centers, and the linear combination of atomic orbital (LCAO) coefficients, is derived. Wave functions obtained by the FVMO method include the effect of electronic or positronic orbital relaxation explicitly and satisfy the virial and Hellmann-Feynman theorems completely. We have demonstrated the optimization of each orbital exponent in various positron-atomic and anion systems, and estimated the positron affinity (PA) as the difference between their energies. Our PA obtained with small basis set is in good agreement with the numerical Hartree-Fock result. We have calculated the OH- and [OH-; e+] species as the positron-molecular system by the FVMO method. This result shows that the positronic basis set not only becomes more diffuse but also moves toward the oxygen atom. Moreover, we have applied this method to determine both the nuclear and electronic wave functions of LiH and LiD molecules simultaneously, and obtained the isotopic effect directly.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 491-501, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...