Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The linear response calculations in the multiconfiguration time-dependent Hartree–Fock (MCTDHF) approximation with a closed-shell-type MCSCF state as the time-independent reference state are discussed. The application to the LiH molecule with a small basis set ([4s2p1d/2s1p]) shows validity of our MCTDHF approach to the singlet ground state. Our MCSCF correlation energy is 97% of the total (=full CI) correlation energy and the MCTDHF excitation energies are in good agreements with the Δ full CI excitation energies. The Born–Oppenheimer potential energy curves for the lowest three singlet states of LiH and the corresponding vibrational level spacings, the transition moments, the oscillator strengths, and the frequency-dependent dipole polarizabilities are reported. All of these results imply the potentiality of our MCTDHF method for the future work with the larger basis set. One of such basis sets ([9s8p4d/8s7p1d]) is referentially used only at the single-configuration TDHF level, and the resultant near-Hartree–Fock polarizability and Thomas–Reiche–Kuhn sum rule is very promising.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 70 (1998), S. 491-501 
    ISSN: 0020-7608
    Keywords: positron-molecule complex ; positron affinity ; full variational molecular orbital method ; nuclear wave function ; orbital relaxation ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Optimal Gaussian-type orbital (GTO) basis sets of positron and electron in positron-molecule complexes are proposed by using the full variational treatment of molecular orbital (FVMO) method. The analytical expression for the energy gradient with respect to parameters of positronic and electronic GTO such as the orbital exponents, the orbital centers, and the linear combination of atomic orbital (LCAO) coefficients, is derived. Wave functions obtained by the FVMO method include the effect of electronic or positronic orbital relaxation explicitly and satisfy the virial and Hellmann-Feynman theorems completely. We have demonstrated the optimization of each orbital exponent in various positron-atomic and anion systems, and estimated the positron affinity (PA) as the difference between their energies. Our PA obtained with small basis set is in good agreement with the numerical Hartree-Fock result. We have calculated the OH- and [OH-; e+] species as the positron-molecular system by the FVMO method. This result shows that the positronic basis set not only becomes more diffuse but also moves toward the oxygen atom. Moreover, we have applied this method to determine both the nuclear and electronic wave functions of LiH and LiD molecules simultaneously, and obtained the isotopic effect directly.   © 1998 John Wiley & Sons, Inc. Int J Quant Chem 70: 491-501, 1998
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 56 (1995), S. 163-173 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An automated method by the algebraic programming language REDUCE3 for specifying the matrix elements expressed in second quantization language is presented and then applied to the case of the matrix elements in the TDHF theory. This program works in a very straightforward way by commuting the electron creation and annihilation operators (a† and a) until these operators have completely vanished from the expression of the matrix element under the appropriate elimination conditions. An improved method using singlet generators of unitary transformations in the place of the electron creation and annihilation operators is also presented. This improvement reduces the time and memory required for the calculation. These methods will make programming in the field of quantum chemistry much easier. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...