Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Purkinje cells  (4)
  • Vestibulo-cerebellar input  (2)
  • Commissural inhibition  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 9 (1969), S. 30-52 
    ISSN: 1432-1106
    Keywords: Climbing fibers ; Mossy fibers ; Vestibulo-cerebellar input ; Cat ; Frog ; Golgi cell inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Field and unitary potentials evoked in the vestibulo-cerebellum of frog and cat following vestibular nerve stimulation were recorded with microelectrodes and correlated with their site of origin in the various layers of the cerebellar cortex. 2. In the frog, primary vestibular fibers project both as mossy and as climbing fibers onto the cerebellar auricular lobe. Secondary vestibulo-cerebellar fibers seem to end exclusively as mossy fibers in the auriculum. As a consequence of this dual projection, extra- and intracellular recordings from Purkinje cells in the auricular lobe show two kinds of responses to vestibular nerve stimulation: a) graded, repetitive firing mediated through mossy fiber-granule cell-parallel fiber pathways, and b) all-or-none burst responses caused by monosynaptic impingement of vestibular climbing fibers on Purkinje cells. 3. The field and unitary potentials evoked in the cat nodulus, flocculus and uvula following vestibular nerve stimulation are shown to be generated by mossy fibers exclusively. Considerable convergence of the two labyrinthine mossy fiber inputs to a given cerebellar area was found. 4. Interaction of contralateral and ipsilateral mossy fiber input at the level of the flocculus suggests that Golgi cell inhibition might operate not only as a simple inhibitory feedback loop, but also as a complex gating operator at the granule layer. 5. No short latency climbing fiber activation of Purkinje cells was observed following VIIIth nerve stimulation. Stimulation of the contralateral inferior olive evoked short latency climbing fiber EPSPs in Purkinje cells of the vestibulo-cerebellum. Suggestions are made as to the possible role of mossy and climbing fiber inputs to this area of the cerebellum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 29 (1977), S. 1-14 
    ISSN: 1432-1106
    Keywords: Purkinje cells ; Eye movements ; Vermis ; Monkey ; Cerebellum ; Motor control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The temporal relation between the onset of electrical activity of Purkinje cells and the occurrence of rapid eye movements was studied. Experiments were performed in unanesthetized animals, the recordings being made under direct vision through the use of a chronically implanted teflon sleeve. The following results were obtained. 1. Correlation between the activity of Purkinje cells and eye movements indicates that Purkinje cell firing in vermal lobules VI and VII precedes eye movement by 11–24 msec, peak activity corresponding to the time of onset of eye movement. 2. This eye movement related activity of Purkinje cells occurred regardless of the direction of the eye movements but some cells showed directional biases. Best correlation between eye movement and Purkinje cell activity was found with fast eye movements toward the right regardless of recording side. 3. Electrical activity of Purkinje cells was mainly related to saccades. Slow eye movement modulation, although probably present, was not studied in detail. 4. In those cells where an extensive set of measurements could be made, Purkinje cell firing was found to be inversely proportional to the amplitude of the eye movement, small movements being preceded by highest Purkinje cell activity. The present results suggest that cerebellar vermis responds prior to the generation of eye movement and may probably serve to control eye movements in a ballistic manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 17-39 
    ISSN: 1432-1106
    Keywords: Parallel fibres ; Purkinje cells ; Cerebellum ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. When electrical stimuli were applied to the surface of a cerebellar folium by a local electrode (LOC), there was a propagated potential wave along the folium with a triphasic (positive-negative-positive) configuration. 2. Investigations by microelectrode recording established that this wave is produced by impulses propagating for at least 3 mm and at about 0.3 m/sec along a narrow superficial band or “beam” of parallel fibres. As expected from this interpretation, there was an absolutely refractory period of less than 1 msec and impulse annihilation by collision. 3. Complications occurred from the potential wave forms resulting from the excitation of mossy fibres by spreading of the applied LOC stimulus. These complications have been eliminated by chronically deafferenting the cerebellum. 4. When recording within the beam of excited parallel fibres there was a slow negative wave of about 20 msec duration, and deep and lateral thereto, there was a slow positive wave of approximately the same time course. 5. These potential fields were expressed in serial profile plots and in potential contour diagrams and shown to be explicable by the excitatory and inhibitory synaptic action on Purkinje cells: excitatory depolarizing synapses of parallel fibre impulses on the dendrites; and hyperpolarizing inhibitory synapses of stellate and basket cells respectively on the dendrites and somata. The active excitatory synapses would be strictly on the parallel fibre beam and the inhibitory concentrated deep and lateral thereto, which is in conformity with the axonal distributions of those basket and stellate cells that would be excited by the parallel fibre beam. 6. Complex problems were involved in interpretation of slow potentials produced by a second LOC stimulus at brief stimulus intervals and up to 50 msec: there was a potentiation of the slow negative wave, and often depression of the positive wave deep and lateral to the excited beam of parallel fibres. 7. Often the LOC stimulus evoked impulse discharge from the Purkinje cells, these discharges being inhibited by a preceding LOC stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 1 (1966), S. 161-183 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Purkinje cells ; Intracellular recording ; Postsynaptic potentials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Intracellular recording from Purkinje cells has been employed in investigating the excitatory and inhibitory synaptic action that is exerted on these cells by the mossy fibre input into the cerebellum. 2. These synaptic actions are evoked not directly by the mossy fibres, but probably always through granule cells and their axons, the parallel fibres. The intracellular records conform with the anatomical evidence that the parallel fibres directly exert a powerful synaptic excitatory action on Purkinje cells, and that the inhibitory pathway occurs via an inhibitory interneurone — a basket cell or a stellate cell. Direct stimulation of parallel fibres gives intracellular potentials closely resembling those produced by deep stimulation of mossy fibres. 3. As would be expected, direct stimulation of parallel fibres produces an EPSP with a latency 1 to 2 msec briefer than the IPSP. The IPSP has a duration usually in excess of 100 msec. The EPSP appears to be briefer, though its superposition on the IPSP greatly reduces its apparent duration. Neutralization of the IPSP by appropriate membrane polarization or by intracellular chloride injection reveals an EPSP duration of up to 50 msec. 4. The IPSP is typically affected by polarizing currents; reduced and even inverted by hyperpolarizing currents, and increased by depolarizing currents. The IPSP is converted to a depolarizing response by excess of intracellular chloride. It must therefore be generated by an increased ionic permeability of the inhibitory subsynaptic membrane, chloride ions being importantly concerned. 5. Often small irregular IPSPs can be observed occurring spontaneously, and they react to polarizing currents and to chloride injections in a manner identical to the evoked IPSPs. It is concluded that they are generated by the spontaneous discharges of basket cells. 6. A brief account is given of various spontaneous rhythmic responses of impaled Purkinje cells, and of the effect of synaptic inhibitory action upon them. 7. There is a general discussion of these findings in relation to the various neural pathways and neural mechanisms that have been postulated in the light of the preceding investigations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 13 (1971), S. 408-431 
    ISSN: 1432-1106
    Keywords: Vestibulo-cerebellar input ; Purkinje cells ; Mossy fibers ; Climbing fiber ; Responses to rotation ; Frog cerebellum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The electrical activity of single Purkinje cells was studied in the auricular lobe and in the vestibular cerebellum of Rana catesbeiana during horizontal angular acceleration. This form of physiological stimulation allowed the Purkinje cells to be categorized into four main classes, depending on the general properties of their responses. 1. Type I Purkinje cells responded to ipsilateral horizontal acceleration. Their discharge was blocked during contralateral rotation. Within this group, individual Purkinje cell responses to a protracted acceleration varied from purely phasic to purely tonic discharge. 2. Type II Purkinje cells were characterized by their activation following contralateral horizontal acceleration and by lack of response to the ipsilateral rotation. Both type I and II Purkinje cells were encountered mainly in the auricular lobe. 3. Type III, the most common form of Purkinje cell response, was activated by rotation in either ipsi- or contralateral direction. Their response, as that of type I, could vary from a purely phasic to a purely tonic discharge. The study of field potentials and unitary responses evoked by electrical stimulation of the vestibular nerve demonstrated that type III Purkinje cell response was evoked via a polysynaptic pathway different from that which activated Purkinje cells in the auricular lobe. 4. Type IV Purkinje cells were characterized by the reduction of spontaneous firing during acceleration in either ipsi- or contralateral directions. 5. A comparison of the responses evoked by type III Purkinje cells in the cerebellar cortex demonstrated that neighboring Purkinje cells may respond in different fashions to the same vestibular input. Furthermore, the tonic or phasic character of a given Purkinje cell was very similar for ipsi- and contralateral rotation, suggesting that the subtle differences between responses in neighboring Purkinje cells may be related to differences in their dynamic properties rather than differences in the types of afferents received. 6. Climbing fiber activation of Purkinje cells during horizontal rotation was clearly demonstrated in five cells. These responses are considerred to be mediated through the saccular or utricular systems rather than through the semi-circular canals. The conclusion is derived that the semi-circular canal input to the cerebellum is subserved mainly by mossy fiber input. 7. The possible functional meaning of the different types of Purkinje cell response is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 15 (1972), S. 364-385 
    ISSN: 1432-1106
    Keywords: Vestibulo-trochlear reflex ; Reverberation ; Floccular inhibition ; Commissural inhibition ; Cerebellar influence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Field and intracellular potentials were recorded at the level of the trochlear nucleus (TN) following stimulation of the ipsi- or contralateral vestibular nerve (Vi, Vc) or the cerebellar flocculus (Floc). Vi and Vc stimulation produced clear presynaptic field potentials in the TN as the vestibulo-trochlear volleys ascending from the vestibular nucleus reached the trochlear motoneurons (TMns). Paired Vi-Vi or Vc-Vc stimulation at different intervals demonstrated a clear depression of the second of the two presynaptic potentials in the TN. A similar finding was obtained intracellularly from TMns. These results indicate a marked reduction in the excitability of the vestibular neurons following the conditioning stimulus. This period of subnormality may last for as long as 40 msec. Electrical stimulation of Vi and Vc generated an IPSP and EPSP respectively in TMns. In most instances these synaptic potentials occurred in a repetitive fashion after a single stimulation to either nerve. This reverberatory-like tendency of the vestibulo-trochlear pathways was absent in decerebellate animals, implying a cerebellar modulatory mechanism on vestibulo-trochlear transmission. Floccular stimulation produced a strong monosynaptic depression of the field and intracellular potentials evoked in the TN by Vi activation. In chronic experiments where the vestibular nerve had been transected, Floc stimulation generated a disinhibition of TMns through its suppression of the ipsilateral inhibitory vestibular neurons which project to the TN. Contralateral Floc stimulation produced a clear disfacilitation of TMns by the inhibition of contralateral excitatory vestibular neurons. Direct evidence was obtained for commissural inhibition acting on both the inhibitory and excitatory vestibular neurons projecting to the TN. The functional implications of the interaction between ipsi- and contralateral vestibular nuclei and the cerebellum and vestibular nuclei are considered in the Discussion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...