Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 78 (1989), S. 264-269 
    ISSN: 1432-0533
    Keywords: Skeletal muscle ; Regeneration ; Growth factors ; Growth hormone ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Against the background of the importance of growth hormone (GH) for normal muscle growth, a study was performed to investigate whether lack of GH after hypophysectomy affects the cell proliferation and the local production of insulin-like growth factor-I (IGF-I) in the early stages of muscle regeneration in adult rats. The level of IGF-I in the serum of hypophysectomised rats was reduced to about 30% of that of controls. The incorporation of [methyl-3H]thymidine into the regenerating muscle showed a peak 6 days after the operation and then gradually declined to the end of the period of study 30 days after initiation of regeneration by ischemic necrosis. The DNA content rose to a maximum level after 6–8 days, and remained high after 30 days. There was no major difference in the incorporation of [3H]thymidine in regenerating muscle of hypophysectomised and control rats, but the DNA concentration in the regenerating muscles of hypophysectomised rats was significantly reduced after 30 days. There was a corresponding reduction in the number of nuclei per muscle fibre, indicating that hypophysectomy has a small effect on the cell proliferation during the early stages of muscle regeneration. Immunohistochemical demonstration of IGF-I in the regenerating muscle revealed the transient presence of immunoreactive material in satellite cells and myotubes after 6 to 8 days of regeneration but no immunoreactivity after 30 days. No obvious difference was observed between hypophysectomised and control rats, indicating that the endogenous production of IGF-I in regenerating skeletal muscle can occur independently of GH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0533
    Keywords: Key words Hereditary inclusion body myopathy ; Mitochondria ; Mitochondrial DNA deletions ; Cytochrome c oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have recently described an autosomal dominant hereditary inclusion body myopathy (h-IBM). Clinically it is is characterized by congenital joint contractures and slowly progressive, proximal muscle weakness and ophthalmoplegia. There is deterioration of muscle function between 30 and 50 years of age. While young patients show minor pathological changes in muscle, the middle-aged and old patients show rimmed vacuoles and inclusions of filaments measuring 15–18 nm in diameter. Except for the absence of significant inflammation the histopathology is similar to that found in sporadic inclusion body myositis (s-IBM). In s-IBM mitochondrial alterations including cytochrome c oxidase (COX) -deficient muscle fibers are common. These are due to multiple mitochondrial DNA (mtDNA) deletions. In this study we investigated the occurrence of mitochondrial alterations in autosomal dominant h-IBM. Young affected individuals showed no mitochondrial changes but three patients aged 38, 51 and 59 years, respectively, showed ragged red fibers and COX-deficient muscle fibers. Polymerase chain reaction analysis showed multiple mtDNA deletions. By in situ hybridization clonal expansions of mtDNA with deletions were demonstrated in COX-deficient muscle fibers. Most of the analyzed deletion breakpoints showed nucleotide repeats flanking the deletions. The results show that COX-deficient muscle fibers and somatic mtDNA deletions are present in this family with h-IBM. The same factors may be involved in the development of mtDNA deletions in s-IBM and this family with h-IBM.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...