Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Illegitimate recombination  (3)
  • DNA gyrase  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 244 (1994), S. 111-119 
    ISSN: 1617-4623
    Keywords: Illegitimate recombination ; S. pombe Nonhomologous integration ; Recombination junctions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to elucidate the mechanisms of illegitimate recombination in eukaryotes, we have studied the structure of DNA fragments integrated by illegitimate recombination into the genome of fission yeast. Nonhomologous recombination was rarely identified when a long region of homology with the chromosomal leu1 + gene was present in the introduced leu1::ura4 + DNA fragment; but a decrease in length of homology leads to an increase in the ratio of nonhomologous to homologous recombination events. The introduced DNA fragments were integrated into different sites in the chromosomes by nonhomologous recombination. The results suggested that there are multiple modes of integration; most events simply involve both ends of the fragments, while in other cases, fragments were integrated in a more complicated manner, probably via circularization or multimerization. To analyze the mechanism of the major type of integration, DNA fragments containing the recombination junctions of three recombinants were amplified by inverted polymerase chain reaction (IPCR) and their nucleotide sequences were determined. There was no obvious homology between introduced DNA and chromosomal DNA at these recombination sites. Furthermore it was found that each terminal region of the introduced DNA was deleted, but that there were no or very small deletions in the target sites of chromosomal DNA. Two models are proposed to explain the mechanism of nonhomologous integration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Escherichia coli ; Dictyostelium ; DNA gyrase ; Deletion ; Plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We constructed a recombinant plasmid containing the 2.1 kb HindIII fragment of plasmid pDG1, isolated from the cellular slime mold (Dictyostelium sp. strain GA11), and using pAG60 as cloning vector. We found that deletions of the recombinant plasmid took place frequently in Escherichia coli wild-type cells. However, the deletion was not observed when the plasmid was introduced into a strain that was an isogenic temperature-sensitive mutant of the gyrA gene. These results suggest that E. coli DNA gyrase is involved in the mechanisms of the deletion formation. It was shown that the 1.0 kb deletant derived from the 2.1 kb HindIII insert was produced by elimination of a 1.1 kb region. Sequence analysis of the deletants showed that cutting and rejoining took place between two out of the six nearly perfect direct repeats [21 bp palindromic sequences; AAAAAA(T/C)GGC(G/C)GCC(A/G)TTTTTT], located near the distal ends of the inverted repeats, preserving one copy of the repeats. These sequences consist of local short inverted repeats, where cutting and rejoining occur at one of the two regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 230 (1991), S. 60-64 
    ISSN: 1617-4623
    Keywords: Specialized transduction ; bio gene ; Illegitimate recombination ; REP sequence ; DNA gyrase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary To examine the mechanism of recombination involved in the formation of specialized transducing phage during the induction of bacteriophage λ we have determined the nucleotide sequences of the recombination junctions of λbio phages. The results indicate that abnormal excision takes place at many sites on both bacterial and phage genomes and that the recombination sites have short regions of homology (5–14 bp). Some of the sequences of the recombination sites were similar to the consensus sequences of DNA gyrase-cleavage sites and repetitive extragenic palindromic (REP) sequences. These results showed that abnormal excision is a type of illegitimate recombination. The possible involvement of DNA gyrase in this recombination is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 229 (1991), S. 325-333 
    ISSN: 1617-4623
    Keywords: Illegitimate recombination ; Insertion-duplication ; α-satellite ; Repetitive sequence ; Monkey cell
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have developed a system for the detection of a new type of insertion mutation in mammalian cells. We have used a shuttle vector, plasmid pNK1, which contains the SV40 and pBR322 replication origins, and ApR, galK, and neo R genes. This plasmid was introduced into monkey COS1 cells, allowed to replicate, and then recovered plasmids were reintroduced into Escherichia coli HB101 to detect insertion mutations in the galK gene. We selected galK − KMR ApR mutants in order to eliminate galK − KmS deletion mutants. Insertion mutations in the plasmids recovered were then screened by agarose gel electrophoresis. Finally, insertion mutants that had the following characteristics were selected. First, they had the ability to produce gal+ revertants caused by the precise excision of inserted DNA in E. coli, implying that they had a target site duplication on both sides of the insertion. Second, they contained some repetitive sequence(s) as judged by hybridization with a bulk monkey DNA probe. Nucleotide sequence analysis of one of the mutants, 15K-1, showed that it contained α-satellite sequences within the coding region of the galK gene. It contained $$13\frac{1}{2}$$ tandem repeat units of α-satellite sequence and was flanked by a 64 bp target site duplication, indicating that the α-satellite sequence had been translocated from the monkey genome into the plasmid by illegitimate recombination. Another insertion mutant, N11-1, contained an 11 kb insert which included an unknown repetitive sequence that was also flanked by a target site duplication of 353 bp. Since both of the insertion mutations contain long target site duplications, we concluded that the insertion mutations detected here are a new type of insertion mutation. A model for the formation of the insertion-duplication mutation is proposed, in which DNA replication plays a role in this illegitimate recombination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...