Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 287 (1975), S. 181-190 
    ISSN: 1432-1912
    Keywords: Caudate Nucleus ; Dopamine ; Ouabain ; Reserpine ; Prenylamine ; Uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Homogenates of the caudate nucleus of the pig were submitted to differential centrifugation. The 20 000 g and 80 000 g fractions were isolated and a part of them was osmotically shocked. The highest dopamine content per mg protein was found in the intact 80 000 g fraction. Incubation experiments with the intact and the osmotically shocked fractions at 25°C revealed that the particles of the intact 20 000 g fraction took up dopamine; the influx of the amine was not enhanced by addition of ATP and magnesium to the incubation medium. On the other hand after osmotic shock the uptake of dopamine into the particles of this fraction was greatly enhanced by addition of ATP and magnesium. The uptake of dopamine into the particles of both intact and osmotically shocked 80 000 g fractions was likewise enhanced by ATP and magnesium. The uptake in all fractions was not influenced by ouabain. The influx of dopamine into the particles of the intact 80 000 g fraction was competitively inhibited by reserpine (K i 0.96×10−8 M) and prenylamine (K i 1.74×10−8 M). It is concluded that the intact 20,000 g fraction contains intact synaptosomes; the uptake of dopamine is independent of the presence of ATP and magnesium. The shocked 20 000 g fraction and the 80 000 g fractions contain synaptic vesicles; the uptake of dopamine into these vesicles is enhanced by ATP and magnesium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 347 (1993), S. 28-33 
    ISSN: 1432-1912
    Keywords: Ultradian rhythm ; Hypothalamus ; Pushpull cannula ; Dopamine ; Noradrenaline ; Adrenaline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To investigate the patterns of catecholamine release in the brain, the hypothalamus of conscious, freely moving rats was superfused through a push-pull cannula with artificial cerebrospinal fluid and the catecholamines dopamine, noradrenaline and adrenaline were determined in the superfusate radioenzymatically. Superfusate was continuously collected in time periods of 20 min for at least 20h. Dopamine, noradrenaline and adrenaline release rates fluctuated according to an ultradian rhythm with a frequency of 1 cycle/92 min (dopamine and noradrenaline) or 99 min (adrenaline). Additionally, the three catecholamines were released according to an ultradian rhythm with the following frequencies: noradrenaline and adrenaline 1 cycle/ 12 h, dopamine 1 cycle/8 h. The release rates of dopamine and adrenaline were similar during light and dark periods, while the release rate of noradrenaline in the dark period was slightly lower than that during the light period. It is concluded that in the hypothalamus of the conscious rat the release rates of dopamine, noradrenaline and adrenaline fluctuate according to two ultradian rhythms with different frequencies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 347 (1993), S. 21-27 
    ISSN: 1432-1912
    Keywords: Locus coeruleus ; Noradrenaline release ; Dopamine release ; Push-pull cannula ; Central blood pressure control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The involvement of catecholaminergic neurons of the locus coeruleus in central cardiovascular control was investigated in the anaesthetized cat. Push-pull cannulae were bilaterally inserted into the LC and the release of noradrenaline and dopamine was determined radioenzymatically in the superfusate. The effects of experimentally induced changes in blood volume and vascular resistance on catecholamine release in the locus coeruleus were studied. Hypervolaemia strongly inhibited the release of noradrenaline in the locus coeruleus. Intravenous infusion of noradrenaline (5 μg·kg−1·min−1) elicited a pronounced pressor response which was also associated with a decrease in the release of noradrenaline in the locus coeruleus. Conversely, a fall of blood pressure caused by a controlled haemorrhage enhanced the release of noradrenaline. A profound fall in blood pressure caused by infusion of nitroprusside (8 μg·kg−1·min−1) did not modify the release rate of noradrenaline. Dopamine release rate was not significantly influenced by these cardiovascular alterations. The results demonstrate that increases in blood pressure elicited by vascular constriction or hypervolaemia inhibit the release of noradrenaline in the locus coeruleus. Decreases in blood pressure elicited by hypovolaemia enhance the release of noradrenaline, but lowering blood pressure by vasodilatation is ineffective. Hence, the release of endogenous noradrenaline in the locus coeruleus is responsive to haemodynamic signals, thus supporting the suggested integrative role of the locus coeruleus in central cardiovascular control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 350 (1994), S. 339-345 
    ISSN: 1432-1912
    Keywords: Locus coeruleus ; Dopamine ; Noradrenaline ; Adrenaline ; Veratridine ; Tetrodotoxin ; Push-pull cannula ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To investigate the release of endogenous dopamine, noradrenaline and adrenaline in the locus coeruleus, this brain area was superfused with artificial cerebrospinal fluid (CSF) through push-pull cannulae and the release of catecholamines was determined in the superfusate radioenzymatically. Collection of superfusates in time periods of 10 min revealed that release rates of the three catecholamines fluctuated, thus pointing to the existence of ultradian rhythms with following mean periods (minutes per cycle): noradrenaline 52±4, dopamine 37±2, adrenaline 36±2. The rhythm frequency of noradrenaline was significantly lower than the frequencies of dopamine and adrenaline. When the locus coeruleus was superfused with neuroactive drugs, superfusates were collected in time periods of 3 min. Superfusion with tetrodotoxin (1 μmol 1−1) for 12 min elicited a prompt and sustained decrease (−70%) in the release rates of dopamine and adrenaline. The release rate of noradrenaline was also reduced, although to a lesser extent (−40%). Superfusion with veratridine (50 μmol 1−1) led to an immediate and very pronounced enhancement in the release rates of dopamine, noradrenaline and adrenaline. The veratridine-induced increase in catecholamine outflow was decreased strongly by simultaneous superfusion with tetrodotoxin. The findings suggest that the release of endogenous catecholamines in the locus coeruleus fluctuates according to ultradian rhythms. Changes in the release on superfusion with veratridine and tetrodotoxin demonstrate the neuronal origin of the three catecholamines. The observed differences in the release characteristics between noradrenaline on the one hand and dopamine and adrenaline on the other might indicate that noradrenaline is partly released from somatodendritic sites of the noradrenergic cell bodies in the locus coeruleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 359 (1999), S. 386-393 
    ISSN: 1432-1912
    Keywords: Key words Serotonin ; 5-HIAA ; Locus coeruleus ; Dorsal raphe nucleus ; Push-pull superfusion technique ; Lesion ; Electrical stimulation ; Microinjection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The serotonergic innervation of the locus coeruleus paetly derives from the dorsal raphe nucleus (DRN). Using the push-pull superfusion technique, we investigated whether and to what extent the release of serotonin and the extracellular concentration of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the locus coeruleus are influenced by the neuronal activity of the DRN. In anaesthetized rats, a push-pull cannula was inserted into the locus coeruleus, which was continuously superfused with artificial cerebrospinal fluid (aCSF). Serotonin and 5-HIAA levels in the superfusate were determined by HPLC combined with electrochemical detection. Electrical stimulation (5 Hz, 300 μA, 1 ms) of the DRN for 5 min, or its chemical stimulation by microinjection of glutamate (3.5 nmol, 50 nl), led to an increased release of serotonin in the locus coeruleus and to a slight (2 mmHg) decrease in blood pressure. Superfusion of the locus coeruleus with tetrodotoxin (1 μM) abolished the increase in the release rate of serotonin evoked by electrical stimulation of the DRN, while the slight fall in blood pressure was not influenced. Thermic lesion (75 °C, 1 min) of the DRN elicited a pronounced decline in serotonin release rate within the locus coeruleus, the maximum decrease being 52%. The decrease in the release of serotonin was associated with a long-lasting rise in blood pressure. Microinjection of the serotonin neurotoxin 5,7-dihydroxytryptamine (5 μg, 250 nl) into the DRN led to an initial increase in the serotonin release rate that coincided with a short-lasting fall in blood pressure. Subsequently, the release of serotonin was permanently reduced and was associated with hypertension. Microinjection of the 5-HT1A receptor agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT; 7.5 nmol, 50 nl) into the DRN led to a long-lasting reduction of the release rate of serotonin in the locus coeruleus. Microinjection of 8-OH-DPAT into the DRN also slightly lowered blood pressure (3 mmHg). Neither stimulations nor lesion of the DRN, nor microinjection of 8-OH-DPAT into this raphe nucleus, altered the extracellular concentration of 5-HIAA. Judging from the present biochemical results it appears that the serotonergic afferents to the locus coeruleus originate to more than 50% from cell bodies located in the DRN. The neuronal serotonin release in the locus coeruleus is modulated by 5-HT1A receptors lying within the DRN. Changes in blood pressure and release of serotonin elicited by stimulating or lesioning the DRN point to the importance of serotonergic neurons extending between this raphe nucleus and the locus coeruleus in central cardiovascular control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 359 (1999), S. 460-465 
    ISSN: 1432-1912
    Keywords: Key words Spontaneously hypertensive rats ; Serotonin ; release ; Locus coeruleus ; Noradrenaline ; Sodium ; nitroprusside ; Noise ; Tail pinch ; Push-pull superfusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The aim of the present work was to clarify whether differences exist between the release of endogenous serotonin in the locus coeruleus of normotensive and hypertensive rats. The locus coeruleus was superfused with artificial cerebrospinal fluid (aCSF) through a push-pull cannula and serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the superfusate by HPLC combined with electrochemical detection. Compared with normotensive Wistar-Kyoto (WKY) rats, the basal release rate of serotonin in the locus coeruleus of spontaneously hypertensive rats (SHR) was increased more than twofold. Intravenous infusion of noradrenaline (4 μg/kg min) increased mean arterial blood pressure to the same extent in hypertensive and normotensive rats. The pressor response was associated with an increased serotonin release. In WKY rats, the release of serotonin in the locus coeruleus evoked by noradrenaline infusion was more pronounced than in SHR. In WKY rats, intravenous infusion of sodium nitroprusside (150 μg/kg min) led to a fall in blood pressure which was less pronounced and lasted shorter than in SHR. The depressor response was associated with decreased serotonin release. In WKY rats, the decrease in serotonin release evoked by sodium nitroprusside was more pronounced and lasted longer than in SHR. Neither noradrenaline nor sodium nitroprusside influenced the outflow of 5-HIAA. The sensory stimuli noise and tail pinch led to a slight rise in arterial blood pressure which was similar in WKY rats and SHR. These stimuli enhanced the release rate of serotonin and the outflow of 5-HIAA to the same extent in the locus coeruleus of normotensive and hypertensive rats. The findings suggest that the enhanced release of serotonin in the locus coeruleus of genetically hypertensive rats reflects a mechanism counteracting the disturbed blood pressure homeostasis. Stressors influence blood pressure and release of serotonin in the locus coeruleus of SHR and WKY rats to the same extent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 308 (1979), S. 143-147 
    ISSN: 1432-1912
    Keywords: Hypothalamus ; GABA release ; Superfusion ; Electrical stimulation ; Potassium chloride ; Locus coeruleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The posterior hypothalamus of anaesthetized cats was superfused with artificial cerebrospinal fluid through a push-pull cannula and the release of endogenous GABA from the hypothalamus into the superfusate was studied. The resting release of GABA varied rhythmically, since phases of high rate of release were separated from each other by phases of low rate of release. The time interval between two adjacent phases of high rate of release was about 70 min. Electrical stimulation of the posterior hypothalamus with the tip of the cannula enhanced the rate of release of GABA in a frequency-dependent way. Superfusion of the hypothalamus with CSF which contained a high concentration of potassium and a low concentration of sodium increased the rate of release of GABA; this effect was dependent on the presence of calcium ions in the superfusing fluid. Pretreatment of the cats with reserpine reduced the levels of GABA in hypothalamus and rest of brain and the concentration of GABA in the superfusate as well. Stimulation of the locus coeruleus with a bipolar electrode elicited an increased release of GABA in the hypothalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 308 (1979), S. 137-142 
    ISSN: 1432-1912
    Keywords: Hypothalamus ; Superfusion ; Catecholamine release ; Electrical stimulation ; Locus coeruleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The posterior hypothalamus of anaesthetized cats was superfused with a push-pull cannula and the release of the endogenous catecholamines noradrenaline, adrenaline and dopamine was determined in the superfusate. The rate of release of the three catecholamines followed an ultradian rhythm, the time interval between two adjacent phases of high rate of release being about 70 min. Pretreatment of the animals with reserpine decreased the levels of catecholamines in the hypothalamus and rest of the brain and reduced their rate of release into the superfusate. Hypothalamic superfusion with superfusing fluid of high concentration of potassium and low concentration of sodium enhanced the rate of release of noradrenaline and adrenaline; this effect was abolished when the hypothalamus was superfused with calcium-free solution. Electrical stimulation of the locus coeruleus ipsilateral to the superfused hypothalamus increased the release of noradrenaline and adrenaline, stimulation of the contralateral locus coeruleus enhanced the release of noradrenaline, adrenaline and dopamine. In both cases, the rate of release of adrenaline was enhanced to a lesser extent than the rate of release of noradrenaline. The release of noradrenaline and adrenaline was increased to a higher extent on stimulation of the ipsilateral locus coeruleus than on stimulation of the contralateral one.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 348 (1993), S. 242-248 
    ISSN: 1432-1912
    Keywords: Locus coeruleus ; Noradrenaline release ; Dopamine release ; Adrenaline release ; Blood pressure ; Baroreceptor reflex ; Push-pull cannula
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Effects of carotid occlusion and drugs applied intravenously on the release of endogenous catecholamines in the locus coeruleus of cats anaesthetized with pentobarbital or chloralose were investigated. The locus coeruleus was superfused bilaterally with artificial cerebrospinal fluid through push-pull cannulae inserted stereotaxically. Dopamine, noradrenaline and in some experiments also adrenaline were determined radioenzymatically in the superfusate. Under pentobarbital anaesthesia, a bilateral carotid occlusion increased the release rate of noradrenaline in the locus coeruleus, while the release of dopamine was decreased. These changes were due to the fall of blood pressure in the carotid sinus caused by the occlusion. Loading of baroreceptors by elevating blood pressure with phenylephrine (10 μg·kg−1·min−1, i.v. infusion) was accompanied by a decreased release of noradrenaline in the locus coeruleus. This decrease in noradrenaline release was not detected in the caudal aspect of the locus coeruleus. Under chloralose anaesthesia, phenylephrine diminished the release rate of noradrenaline to about the same extent as under pentobarbital anaesthesia. The release rate of adrenaline was also decreased. A prolonged infusion of phenylephrine led to a prolonged pressor response associated with a sustained decrease in the noradrenaline release rate. Intravenous injection of chlorisondamine (3 mg·kg−1) did not change the release of noradrenaline, while dopamine release was reduced. It is concluded that the release of catecholamines in the locus coeruleus is influenced by signals originating from peripheral baroreceptors. The influences are similar under pentobarbital and chloralose anaesthesia. Noradrenergic neurons responding to haemodynamic signals are not uniformly distributed within the locus coeruleus. It is suggested that noradrenergic and possibly dopaminergic and adrenergic neurons of the locus coeruleus are involved in the baroreceptor reflex, thus contributing to central homeostasis of blood pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 276 (1973), S. 119-122 
    ISSN: 1432-1912
    Keywords: Hypothalamus ; Locus coeruleus ; Blood Pressure ; Adrenergic Neurones ; Electrocoagulation ; Electrical Stimulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Electrical stimulation of the locus coeruleus or of the hypothalamic posterior area of cats under pentobarbitone anaesthesia elicited a rise of the arterial blood pressure. Electrocoagulation of the hypothalamic posterior area or its lesion by the injection of ethanol significantly diminished the pressor response to electrical stimulation of the locus coeruleus. The pressor response to electrical stimulation of the area posterior was almost completely abolished after electro-coagulation and strongly inhibited after injection of ethanol. It is suggested that adrenergic neurones ascending from the locus coeruleus to the posterior hypothalamus may be involved in the hypothalamic regulation of the arterial blood pressure.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...