Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 171 (1985), S. 41-60 
    ISSN: 1432-0568
    Keywords: Plasma proteins ; Brain development ; Neocortex ; Allocortex ; Immunohistochemistry ; Sheep
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The histogenesis of the cerebral neocortex and early allocortex of the sheep has been described and, using an immunohistochemical technique, five plasma proteins have been identified in the telencephalic wall and their distribution followed during its differentiation. The development of the neocortex was studied from 18 days gestation, when the neural tube was still open, to 120 days, when the adult structure was established. A primordial plexiform layer was formed above the ventricular zone by 25 days and by 35 days this layer was divided by the differentiating cortical plate into an outer marginal zone and an inner subplate zone. The appearance of the subventricular and intermediate zones by 50 days gestation completed the formation of the neocortical layers. The differentiation of the allocortex was generally less advanced than the neocortex up to 40 days gestation, when the primordium of the pyramidal layer was beginning to develop. The five plasma proteins identified, fetuin, α-fetoprotein, albumin, transferrin and α1-antitrypsin, are quantitatively the most important in the csf and plasma of the sheep fetus. Fetuin was the earliest plasma protein to be detected in the brain and it was also the most widespread; positive staining for this protein was seen in cells and fibres of all layers as they differentiated and could still be identified in some mature neurons at 120 days. α-Fetoprotein and albumin had a limited distribution, appearing in cells in the developing cortical plate for a short period early in gestation (35–40 days), but mainly confined to the ventricular zones later and barely detectable by 80 days gestation. Transferrin appeared to have a different distribution, being detected in fibres first in the primordial plexiform layer and then in the marginal and subplate zones, only later being identified in cells of the cortical plate. From their distribution it is suggested that fetuin and transferrin may play an important role in the differentiation of the cortex and the establishment of correct connections between fiber systems and migrating cells at certain stages of development. α1-Antitrypsin was only found in a few cells during a restricted period of gestation. All five plasma proteins were identified in precipitated csf and plasma at most ages examined, although at 18 days gestation albumin, transferrin and α1-antitrypsin and at 120 days, α-fetoprotein, could not be detected. The pattern of distribution of plasma proteins in the telencephalic wall suggests that they could originate either by uptake from csf and subsequent migration of protein containing cells or by local synthesis within some cells during a limited period of differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 168 (1983), S. 227-240 
    ISSN: 1432-0568
    Keywords: Plasma proteins ; Embryo ; Development ; Immunohistochemistry ; Sheep
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of the five plasma proteins that are quantitatively most important during development in the sheep has been studied in embryos of 15 to 21 days gestation. The three primary embryonic layers and tissues that differentiate from them were tested for the presence of α-fetoprotein (AFP), fetuin, albumin, transferrin and α1-antitrypsin using the indirect immunoperoxidase method. Fetuin was the most prominent of these proteins particularly in the developing central nervous system. Fetuin and transferrin appeared early in the differentiating mesoderm and, with albumin and AFP, were detected in tissues originating from all three layers during the course of development. α1-Antitrypsin appeared to have a limited distribution. All five plasma proteins were detected before the establishment of a circulatory system. It is suggested that their appearance in embryonic tissue is related to its stage of development and that they play an important part in early differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0568
    Keywords: Key words Blood proteins ; Alpha-globulins ; Fetal development ; Cell differentiation ; Embryo
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Fetuin is a serum protein widely distributed in the animal kingdom and found in all mammalian species so far investigated. It is mainly a fetal protein, in the sense that the highest concentrations are found in serum and body fluids of embryos and fetuses. In order to elucidate possible biological functions of fetuin, we have studied its synthesis and distribution during the prenatal development of the rat with immunohistochemistry and in situ hybridization. We have isolated fetuin from rat serum and produced an antibody against this protein. In situ hybridization was performed using a 375-nucleotides-long digoxigenin-labeled riboprobe. Fetuin was unevenly distributed in all organ systems during development, with the most pronounced expression at E 10Fetuin is a serum protein widely distributed in the animal kingdom and found in all mammalian species so far investigated. It is mainly a fetal protein, in the sense that the highest concentrations are found in serum and body fluids of embryos and fetuses. In order to elucidate possible biological functions of fetuin, we have studied its synthesis and distribution during the prenatal development of the rat with immunohistochemistry and in situ hybridization. We have isolated fetuin from rat serum and produced an antibody against this protein. In situ hybridization was performed using a 375-nucleotides-long digoxigenin-labeled riboprobe. Fetuin was unevenly distributed in all organ systems during development, with the most pronounced expression at E16–E18. Fetuin expression was present in germinal cell populations, e.g., in the basal layer in the skin, in the germinal cell populations in the brain anlage and the gonads, and it was heavily expressed in the fetal hemopoietic liver. Furthermore, fetuin was expressed in the gastrointestinal epithelium prior to the development of glands and crypts. Fetuin was widely distributed in mesenchymal derived tissues, e.g., bone and muscle. In the developing kidney fetuin was heavily expressed is both mesenchymal condensations and glomerular anlages. Thus, fetuin was located in cells or structures undergoing differentiation and transformation. As fetuin has been shown previously to interfere with hormone signaling of transforming growth factor-β, insulin and hepatocyte-growth factor, fetuin might be involved in cell differentiation and tissue transformation during the initial histogenesis, i.e., the time period in which cellular phenotypic characteristics are established.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...