Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 168 (1983), S. 227-240 
    ISSN: 1432-0568
    Keywords: Plasma proteins ; Embryo ; Development ; Immunohistochemistry ; Sheep
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of the five plasma proteins that are quantitatively most important during development in the sheep has been studied in embryos of 15 to 21 days gestation. The three primary embryonic layers and tissues that differentiate from them were tested for the presence of α-fetoprotein (AFP), fetuin, albumin, transferrin and α1-antitrypsin using the indirect immunoperoxidase method. Fetuin was the most prominent of these proteins particularly in the developing central nervous system. Fetuin and transferrin appeared early in the differentiating mesoderm and, with albumin and AFP, were detected in tissues originating from all three layers during the course of development. α1-Antitrypsin appeared to have a limited distribution. All five plasma proteins were detected before the establishment of a circulatory system. It is suggested that their appearance in embryonic tissue is related to its stage of development and that they play an important part in early differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 171 (1985), S. 41-60 
    ISSN: 1432-0568
    Keywords: Plasma proteins ; Brain development ; Neocortex ; Allocortex ; Immunohistochemistry ; Sheep
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The histogenesis of the cerebral neocortex and early allocortex of the sheep has been described and, using an immunohistochemical technique, five plasma proteins have been identified in the telencephalic wall and their distribution followed during its differentiation. The development of the neocortex was studied from 18 days gestation, when the neural tube was still open, to 120 days, when the adult structure was established. A primordial plexiform layer was formed above the ventricular zone by 25 days and by 35 days this layer was divided by the differentiating cortical plate into an outer marginal zone and an inner subplate zone. The appearance of the subventricular and intermediate zones by 50 days gestation completed the formation of the neocortical layers. The differentiation of the allocortex was generally less advanced than the neocortex up to 40 days gestation, when the primordium of the pyramidal layer was beginning to develop. The five plasma proteins identified, fetuin, α-fetoprotein, albumin, transferrin and α1-antitrypsin, are quantitatively the most important in the csf and plasma of the sheep fetus. Fetuin was the earliest plasma protein to be detected in the brain and it was also the most widespread; positive staining for this protein was seen in cells and fibres of all layers as they differentiated and could still be identified in some mature neurons at 120 days. α-Fetoprotein and albumin had a limited distribution, appearing in cells in the developing cortical plate for a short period early in gestation (35–40 days), but mainly confined to the ventricular zones later and barely detectable by 80 days gestation. Transferrin appeared to have a different distribution, being detected in fibres first in the primordial plexiform layer and then in the marginal and subplate zones, only later being identified in cells of the cortical plate. From their distribution it is suggested that fetuin and transferrin may play an important role in the differentiation of the cortex and the establishment of correct connections between fiber systems and migrating cells at certain stages of development. α1-Antitrypsin was only found in a few cells during a restricted period of gestation. All five plasma proteins were identified in precipitated csf and plasma at most ages examined, although at 18 days gestation albumin, transferrin and α1-antitrypsin and at 120 days, α-fetoprotein, could not be detected. The pattern of distribution of plasma proteins in the telencephalic wall suggests that they could originate either by uptake from csf and subsequent migration of protein containing cells or by local synthesis within some cells during a limited period of differentiation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0568
    Keywords: Tammar wallaby ; Brain development ; Neocortex ; Histology ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The sequence of development of cell layers in the neocortex of the tammar has been followed from 24 days gestation to 213 days postnatal. The tammar is born at 27 days gestation and the major period of its development occurs during the subsequent 250 days, most of this time being spent within the pouch. Although the pattern of differentiation of the cell layers appears to resemble that described for many Eutherian mammals, the neocortex is at an embryonic 2 layered stage at birth and a cortical plate is not present throughout the telencephalon until 10–15 days postnatal. A transient subplate zone, presenting a characteristic appearance with widely spaced rows of cells aligned parallel to the cortical surface, develops between 20 and 70 days postnatal, but no secondary proliferative region is seen in the subventricular zone of the dorso-lateral wall. Preliminary experiments with (3H)-thymidine injections indicate that the cortical plate follows the “inside-out” pattern of development described in many Eutherian mammals and that the oldest neurons are found in the parallel cell rows of the subplate zone. The importance of the late differentiation of the neocortex in relation to the time of birth and the resulting usefulness of the tammar as an experimental model of cortical development is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0568
    Keywords: Fetal sheep ; Developing neocortex ; Fetuin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The development of the neocortex has previously been extensively studied in carnivores (cat and ferret), rodents (rat and mouse) and primates (monkey and human). In these species, it has been shown that the initial population of cells migrating from the ventricular zone forms the primordial plexiform layer. This is subsequently split into marginal zone and subplate zone by the insertion of later-migrating cells into the primordial plexiform layer, to form the cortical plate proper. Many of the cells derived from the split primordial plexiform layer are transient. The neurons of the subplate zone are found in the deeper part of layer VI, and white matter deep to layer VI in the more mature cortex; most of these neurons disappear by adulthood. [3H]-thymidine labelling in the present study has shown a similar pattern of neocortical development in Artiodactyla (sheep). In addition it has been shown that the previously described staining of subplate and cortical plate cells for the fetal protein fetuin indicates that fetuin is a useful marker for a proportion of this transient population of neurons and defines its extent in neocortical development more clearly. Dividing cells were labelled by a single intra-amniotic injection of [3H]-thymidine at E26 to E35 (birth is at E150). The brains were subsequently examined at E40 or E80 for [3H]-thymidine labelling and fetuin staining by a combination of autoradiography and immunocytochemistry. The earliest generated neocortical cells detected in this study (E26) were found in two layers by E40, the outer marginal zone and inner subplate zone. Neurons of the marginal zone were generated up to E28; those of the early subplate zone were generated up to E31. The cortical plate proper was generated by cells “born” on E32 and later. This sequence is similar to that described in other species, especially the cat. A proportion of the early-generated neurons in the marginal zone, subplate zone and early cortical plate stained for fetuin. By E80 these earliest-generated, fetuin-positive cells were found in the white matter deep to the forming neocortical layers and in layer VI. In adult brains no fetuin-positive neurons could be identified in the neocortex, and neurons had almost entirely disappeared from the white matter. The fetal glycoprotein fetuin seems to be specifically associated with a population of cells that has the same developmental history as the transient marginal zone and subplate neurons described in other species. However, the distribution of fetuin-containing neurons is more extensive and includes some of the neurons within the cortical plate itself. Thus in addition to being a marker for a proportion of the transient marginal zone and subplate cells, the presence of fetuin in subplate and cortical plate neurons, given the “trophic” properties attributed to fetuin, may indicate its involvement in early stages of synaptogenesis and connectivity in the developing neocortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0568
    Keywords: Fetal cow ; Brain development ; Fetuin ; Plasma proteins ; Immunocytochemistry ; Cross-reactivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fetuin, α2HS-glycoprotein (α2HS), α-fetoprotein (AFP) and albumin have been shown to be present in some regions of the neocortex in two early stages of development of the cow brain using PAP immunocytochemistry. In the pre-cortical plate stage fibres of the primordial plexiform layer stained positively for fetuin. No staining was seen for albumin but plasma and cerebrospinal fluid (CSF) were positive for α2HS and AFP. In the early cortical plate stage the strongest fetuin positive staining was seen in the earliest formed cells of the plate. α2HS staining was much less intense but similar in distribution. The possible role of fetuin, or related glycoproteins, in cortical plate differentiation is discussed. Staining for AFP and for albumin was seen mainly in the ventricular zone and marginal zone fibres, and had a similar distribution and intensity for both proteins. Plasma and CSF stained for all four proteins. Tests showed some cross-reactivity between fetuin and anti-α2HS and, to a much lesser extent, between antisera to AFP and albumin and antigens denatured by fixation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THE HIGH level of protein in early foetal cerebrospinal fluid (CSF) from human abortion material reported by Adinolfi et al.1 is important confirmation of results obtained from earlier work on human2 and animal foetal CSF3,4. Part of the high concentration of protein, however, may have been due to ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 21 (1992), S. 50-66 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Terminal Schwann cells, when stained for S100 (a calcium binding protein), can be seen to cap motor axons at the neuromuscular junction. Within days of denervation the Schwann cells begin to stain for the low affinity nerve growth factor receptor, but remain Thy-1 negative, and elaborate fine processes. These processes become longer and more disorganized over weeks, and cells positive for S100 and nerve growth factor receptor migrate into the perisynaptic area. Reinnervation results in a withdrawal of the processes. The morphology and location of terminal Schwann cells seems to depend on axonal contact. The spread of Schwann cells and their processes away from the synaptic zone following denervation, implies that these cells do not target axons directly to the endplate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Brain, vertebrate ; Development, ontogenetic ; Proteins, plasma ; Cerebrospinal fluid ; Fetuin ; α2HS glycoprotein ; Human ; Sheep
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The human plasma protein, α2HS glycoprotein, has an amino acid composition very similar to that of fetuin, the major protein in fetal calf and lamb serum. Immunohistochemical studies of human fetuses (6–33 weeks gestation) showed that α2HS glycoprotein and fetuin have similar distributions in developing brain and several other tissues, e.g., bone, kidney, gonads, gastrointestinal tract, respiratory and cardiovascular systems. There were notable differences in the liver and thymus in the distribution of the two proteins. Fetuin and α2HS glycoprotein are present in plasma and cerebrospinal fluid of both human and sheep fetuses; their concentrations are reciprocally related: in human plasma and cerebrospinal fluid α2HS glycoprotein concentration is high and fetuin low; the reverse is the case in sheep fetuses. Estimates of the concentration of α2HS glycoprotein in human fetal cerebrospinal fluid and plasma were obtained. It is suggested that α2HS glycoprotein may play a role in developing tissues, especially in the human fetus, similar to that of fetuin in other species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...