Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Enteric nervous system  (12)
  • Intestine, small  (8)
  • Neuropeptides  (8)
  • Myenteric plexus  (6)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Peptides 2 (1981), S. 119-122 
    ISSN: 0196-9781
    Keywords: 5-Hydroxytryptamine ; Enteric nervous system ; Immunohistochemistry ; Noradrenaline ; Somatostatin ; Substance P
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-9813
    Keywords: Neuropeptides ; Coexistence ; Hirschsprung's disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The distributions of nerve fibres immunoreactive for the peptides calcitonin gene-related peptide (CGRP), enkephalin (ENK), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP), and vasoactive intestinal peptide (VIP) and the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) were studied in healthy colon and samples of ganglionic and aganglionic colon from cases of proven Hirschsprung's disease. Studies of coexistence of reactivities in nerve fibres were performed to predict the possible origins of fibres that are found in the aganglionic bowel, e. g., from sensory or sympathetic ganglia. The muscularis externa of the ganglionic colon contained many nerve fibres immunoreactive for ENK, SP, and VIP, fewer for NPY, and only rare fibres reactive for CGRP, SOM, or TH. In ganglionic colon reactivities for SP and ENK coexisted in nerve fibres in the muscularis externa but in aganglionic colon no ENK immunoreactivity was found and most SP fibres were double-labelled with CGRP reactivity, indicating their probable sensory nature. Abnormally increased numbers of somatostatin-reactive fibres and noradrenergic fibres (marked by TH) were noted in the external muscle, but no coexistence was seen between these reactivities and only a small proportion of the noradrenergic fibres in the muscle showed NPY reactivity although almost all around blood vessels did. Many fibres in the diseased segment had coexistence of NPY and VIP reactivities; these may arise from more orally located intrinsic cell bodies or from pelvic parasympathetic ganglia. In the mucosa of aganglionic colon there was a striking lack of SP-reactive fibres while other fibre types were often normal in number. It is concluded that nerve fibres from sensory ganglia, sympathetic ganglia, nerve cells located more oral in the ganglionated part, and possibly from pelvic parasympathetic ganglia invade the aganglionic bowel in Hirschsprung's disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 336 (1987), S. 419-424 
    ISSN: 1432-1912
    Keywords: Guinea-pig ileum ; Myenteric plexus ; Circular muscle ; Opioid receptors ; Naloxone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The actions of opioids were examined in a strip preparation of the external muscle and myenteric plexus of the guinea-pig ileum cut parallel to the circular muscle. Contractions of the circular muscle induced by electrical stimulation of myenteric neurons were depressed in a concentration-dependent manner by the mu agonists, morphine and DAGO, and by the kappa agonist, U-50,488H. The concentrations of morphine, DAGO and U-50,488H which depressed nerve-mediated contractions by 50% (IC50) were 86 nM, 11 nM and 5.0 nM, respectively. The equilibrium dissociation constants (K D) for naloxone as an antagonist of the inhibitory effects of DAGO and of U5-0,488H were 5.6 nM and 29.4 nM, respectively. In contrast to the potent inhibitory effects of mu and kappa agonists, the delta-selective agonist, d-Pen-l-Pen, produced only weak inhibition of nerve-mediated contractions. Even at a concentration of 3 μM, there was less than 50% inhibition, which was not antagonised by the delta receptor antagonist, ICI 174864. The experiments indicate that both mu and kappa opioid receptors are present on the myenteric neurons supplying the circular muscle and that delta receptors are either absent or ineffectively activated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    International journal of colorectal disease 13 (1998), S. 208-216 
    ISSN: 1432-1262
    Keywords: Key words Slow transit constipation ; Immunohistochemistry ; Enteric nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Abnormalities of the enteric nervous system are thought to explain the pathophysiology of motility disorders. Our aim was to determine if particular classes of enteric neurons are affected in slow transit constipation (STC). Specimens were taken from the terminal ileum and ascending, transverse and descending colon of patients undergoing subtotal colectomy for STC. Immunohistochemistry was performed using antisera to neuron-specific enolase, tachykinin, leu-enkephalin, choline acetyltransferase, vasoactive intestinal peptide, nitric oxide synthase, tyrosine hydroxylase and neuropeptide Y. The density of nerve fibres labelled with these antibodies in each layer was compared with age-matched controls. The density of nerve fibres with tachykinin and enkephalin immunoreactivity was reduced in the colonic circular muscle of the 15 patients with STC, whereas innervation of all other layers was normal. This reduction of tachykinin-immunoreactive nerve fibres also occurred in nine of the 12 specimens of terminal ileum examined. No difference was detected in the density or distribution of nerve fibres using the other antisera. Excitatory nerve fibres are present in the circular muscle in STC but they are deficient in tachykinins and enkephalin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 339 (1989), S. 166-172 
    ISSN: 1432-1912
    Keywords: Guinea-pig ileum ; Myenteric plexus ; Circular muscle ; Opioid dependence ; Morphine withdrawal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Guinea-pigs were treated with morphine for 6–8 days by subcutaneous implantation of pellets, each containing a mixture of morphine base (120 mg) and morphine hydrochloride (35 mg). Each guinea-pig received a single pellet. Mechanical activity of the circular muscle was recorded in vitro in preparations comprising the circular muscle and myenteric plexus. Exposure to morphine was maintained by addition of 1 μM morphine to the organ baths. After 90 min, morphine was withdrawn, either by repeatedly washing tissues in morphine-free Krebs' solution , or by addition of naloxone to reduce the occupancy of the opioid receptors by morphine. Withdrawal of morphine resulted in markedly enhanced contractile activity compared with that in circular muscle-myenteric plexus preparations from untreated control guinea-pigs. The withdrawal contractions were abolished by tetrodotoxin (600 nM) and greatly reduced by hyoscine (1 μM), indicating that they resulted from action potential discharge in myenteric neurons that release acetylcholine onto the circular muscle. Activation of the cholinergic excitatory motor neurons was not secondary to synaptic activation by cholinergic interneurons, because hexamethonium (100 μM) did not affect withdrawal contractions. The withdrawal response may therefore arise in the cholinergic excitatory motor neurons themselves, or in neurons that activate them via noncholinergic mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0878
    Keywords: Calretinin ; Enteric nervous system ; Calcium binding protein ; Small intestine ; Cholinergic neurons ; Myenteric plexus ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Immunoreactivity for calretinin, a calcium-binding protein, was studied in neurones in the guinea-pig small intestine. 26±1% of myenteric neurones and 12±3% of submucous neurones were immunoreactive for calretinin. All calretinin-immunoreactive neurones were also immunoreactive for choline acetyltransferase and hence are likely to be cholinergic. In the myenteric plexus, two subtypes of Dogiel type-I calretinin-immunoreactive neurones could be distinguished from their projections and neurochemical coding. Some calretinin-immunoreactive myenteric neurones had short projections to the tertiary plexus, and hence are likely to be cholinergic motor neurones to the longitudinal muscle. Some of these cells were also immunoreactive for substance P. The remaining myenteric neurones, immunoreactive for calretinin, enkephalin, neurofilament protein triplet and substance P, are likely to be orad-projecting, cholinergic interneurones. Calretinin immunoreactivity was also found in cholinergic neurones in the submucosa, which project to the submucosal vasculature and mucosal glands, and which are likely to mediate vasodilation. Thus, calretinin immunoreactivity in the guinea-pig small intestine is confined to three functional classes of cholinergic neurones. It is possible, for the first time, to distinguish these classes of cells from other enteric neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine ; Neuropeptides ; Gastrin releasing peptide ; Bombesin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27. Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia. It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Perivascular nerves ; Cardiac innervation ; Neuropeptides ; Neuropeptide Y ; Substance P ; Adrenergic nerves ; Amphibia, Anura (Bufo marinus)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The innervation of the major arteries and heart of the toad (Bufo marinus) was examined by use of glyoxylic acid-induced catecholamine fluorescence and peptide immunohistochemistry. All arteries possessed a moderate to dense plexus of adrenergic axons, which also showed neuropeptide Y-like immunoreactivity (NPY-LI). Some adrenergic axons in the intracardiac vagal trunks showed NPY-LI, but the varicose adrenergic axons innervating the cardiac muscle of the atria and ventricle, and the coronary blood vessels did not display NPY-LI. About half of the nerve cell bodies in the anterior sympathetic chain ganglia with dopamine-β-hydroxylase-LI (DBH-LI) also contained NPY-LI. The nerve cell bodies with DBH-LI alone were generally larger (median diameter 30 μm) than those with both DBH-LI and NPY-LI (median diameter 20 μm). Some cell bodies showing DBH-LI alone were surrounded by boutons with NPY-LI but not DBH-LI. Axons that displayed simultaneously both substance P-LI (SP-LI) and calcitonin gene-related peptide-LI (CGRP-LI) also formed a plexus around all arteries studied, being particularly dense around the mesenteric and pulmonary arteries. These axons are most likely sensory since SP-LI was reduced by capsaicin treatment, and nerve cell bodies with both SP-LI and CGRP-LI were found in dorsal root ganglia and the vagal ganglion. A dense plexus of axons showing somatostatin-LI was located around the pulmonary artery and its main intrapulmonary branches. A few nerves with vasoactive intestinal polypeptide-LI were found around the dorsal aorta and pulmonary artery. No perivascular nerves with enkephalin-LI were observed. Reversed-phase, high-pressure liquid chromatography of acid extracts of the large arteries showed that the major peaks of NPY-LI and SP-LI coeluted with porcine NPY (1–36) and synthetic SP (1–11), respectively. Thus, the location and structure of these peptides in perivascular nerves has been highly conserved during vertebrate evolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0878
    Keywords: Key words: Organotypic culture ; Myenteric plexus ; Retrograde transport ; Intestine ; small ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The projections of myenteric neurons within the myenteric plexus of the guinea-pig small intestine were established using retrograde tracing in organotypic culture. Three days after applying the fluorescent dye DiI to a single internodal strand in the myenteric plexus, 500–1000 nerve cell bodies were labelled. Of these, 77% were located oral to the application site, 15% were located anally and 7% were located within 1 mm of this site. Three major morphological types of neurons could be distinguished. Dogiel type I neurons had lamellar dendrites and single axons, Dogiel type II neurons had large smooth cell bodies and several long processes, and filamentous neurons had smooth ovoid cell bodies, single axons and several filamentous dendrites. Dogiel type I, II and filamentous neurons accounted for 54.6%, 38% and 7.4% of all filled cells, respectively. Labelled nerve cell bodies were present up to 13 mm aboral to the DiI application site; all neurons more than 2 mm aboral had Dogiel type I features. On the oral side, Dogiel type I neurons were found up to 110 mm, Dogiel type II neurons up to 100 mm and filamentous neurons up to 80 mm. Neurons with 2 mm oral or aboral to the DiI application site were located up to 7 mm circumferentially and were mainly Dogiel type II cells. This work revealed remarkable polarity within the myenteric plexus, with a significant prevalence of myenteric neurons projecting anally for longer distances than those projecting orally. These long pathways are probably involved in the coordination of intestinal motility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0878
    Keywords: Enteric nervous system ; Intestine ; Noradrenergic nerves ; Pancreatic polypeptide ; Neuropeptide Y ; Neuropeptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Pancreatic polypeptide-like immunoreactivity (PPLI) has been localized in nerves of the guinea-pig stomach and intestine with the use of antibodies raised against avian, bovine and human pancreatic polypeptide (PP), the C-terminal hexapeptide of mammalian PP, and against the related peptide, NPY. Each of the antibodies revealed the same population of neurones. Reactive cell bodies were found in both myenteric (5% of all neurones) and submucous ganglia (26% of all neurones) of the small intestine, and varicose processes were observed in the myenteric plexus, circular muscle, mucosa and around arterioles. The nerves were unaffected by bilateral subdiaphragmatic truncal vagotomy, but the staining of the periarterial nerves disappeared after treatment of animals with reserpine or 6-hydroxydopamine and was also absent after mesenteric nerves had been cut and allowed to degenerate. Vascular nerves showing immunoreactivity for dopamine it-hydroxylase and PPLI had the same distribution. It is concluded that PPLI is located in periarterial noradrenergic nerves. However, other noradrenergic nerves in the intestine do not show PPLI, and PPLI also occurs in nerves that are not noradrenergic. Analysis of changes in the distribution of terminals after microsurgical lesions of pathways in the small intestine showed that processes of myenteric PP-nerve cells provide terminals in the underlying circular muscle and in myenteric ganglia up to about 2 mm more anal. Submucous PP-cell bodies provide terminals to the mucosa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...