Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0533
    Keywords: Amyloid ; Alzheimers disease ; Scrapie ; EM ; Isolation ; Gerstmann-Sträussler syndrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The structure of partially purified, CNS amyloid fibrils from three different sources have been compared by negative stain EM. The fibrils isolated from brains with senile dementia of Alzheimer type were 4–8 nm in diameter, narrowing every 30–40 nm and apparently composed of two 2–4 nm filaments. The fibrils from a Gerstmann-Sträussler syndrome brain were 7–9 nm in diameter, narrowing every 70–80 nm and with a suggestion that they are composed of two 3–5 nm filaments. The fibrils isolated from 87V scrapie-affected mouse brains were 4–8 nm in diameter with a twist every 15–25 nm presumably composed of two 2–4 nm filaments. The fibrils from the scrapie brains were usually observed in pairs. The shape of the clusters of the isolated amyloid fibrils observed in each disease was similar in negative stain and thin section EM preparations and was related to the characteristic morphology of the amyloid fibrils in the neuritic and amyloid plaques in situ. The structural differences between the CNS amyloid fibrils from the various diseases studied by us may reflect differences in the polypeptides which comprise the fibril and/or a different pathogenesis in the formation of the amyloid fibrils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 54 (1981), S. 63-74 
    ISSN: 1432-0533
    Keywords: Scrapie ; Fibrils ; Amyloid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Abnormal fibrillary structures, designated “scrapie-associated fibrils” (SAF), have been observed using negative stain techniques in subfractions of brains from scrapie-affected animals. SAF have been observed in all combinations of strain of scrapie agent and strain or species of host examined, regardless of their histopathology, in particular the presence or absence of amyloid plaques. SAF consist either of two or four filaments. They are morphologically dissimilar to the normal brain fibrils — microtubules, neurofilaments, glial filaments, and F actin. However, SAF do bear a resemblance to amyloid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0533
    Keywords: Alzheimer amyloids ; Synthetic peptide ; Antibodies ; Fibril formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary An antibody was raised to a synthetic peptide corresponding to a published sequence for the first 24 residues of a cerebrovascular amyloid peptide (CVAP). Immunohistochemical staining of tissue sections revealed that the antibody bound extensively to cerebrovascular amyloid in Alzheimer disease (AD/SDAT) and Down's syndrome cases. The antibody bound less extensively to neuritic plaques (primitive and mature) and indetectably to neurofibrillary tangles. The antibody did not label scrapie plaques, scrapie-associated fibrils, or Gerstmann-Sträussler syndrome plaques. Immunoblotting experiments showed that the cerebrovascular amyloid peptide epitopes contaminating the neurofibrillary tangle preparations could be extracted with urea, leaving the neurofibrillary tangles intact. These data confirm that the cerebrovascular amyloid peptide is a component of cerebrovascular amyloid, and suggest that its epitopes are also components of neuritic plaque amyloid. The reduced level of immunostaining on amyloid cores in tissue sections suggests that either the cerebrovascular amyloid peptide epitopes are a minor component of amyloid cores, or that their mode of packing or state of processing in amyloid cores renders them relatively inaccessible to the antibody. We also conclude that the cerebrovascular amyloid peptide is not a component of neurofibrillary tangles. The synthetic cerebrovascular amyloid peptide possesses amyloid-like properties: at neutral pH it forms insoluble aggregates consisting of 5–7-nm fibrils, which form red-green birefringent adducts with Congo red and fluoresce with thioflavine S.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...