Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 81 (1990), S. 209-212 
    ISSN: 1432-1106
    Keywords: NMDA ; Excitatory postsynaptic current ; Voltage sensitivity ; Patch clamp ; Thin hippocampal slice ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Patch-clamp techniques were used to record pharmacologically-isolated N-methyl-D-aspartate-mediated excitatory postsynaptic currents (NMDA-EPSCs) from dentate granule cells in thin rat hippocampal slices. Membrane voltage modulated these EPSCs in two ways. Firstly, depolarization from resting potential enhanced EPSC amplitudes, as expected for a voltage-dependent block by Mg2+ of synaptically activated NMDA receptor channels. Secondly, depolarization markedly prolonged the time course of decay of NMDA-EPSCs in normal and low extracellular Mg2+. Both mechanisms were complementary in establishing a strong dependence between membrane potential and the amount of charge, namely Ca2+, transferred through synaptically activated NMDA receptor channels, that presumably underlies induction of long-term potentiation in the hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 51 (1983), S. 153-156 
    ISSN: 1432-1106
    Keywords: Hippocampal slice ; Epileptiform activity ; CA1 pyramidal cells ; Low calcium ; EGTA ; Rats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Lowering extracellular [Ca2+] in rat hippocampal slices induces spontaneous epileptiform activity in area CA1, which is characterized by rhythmic burst firing of CA1 neurons and by prolonged negative potential shifts at the pyramidal cell body layer. This activity is accompanied by transient decreases of [Na+] and increases of [K+] in the extracellular space. In spite of the complete blockade of synaptic transmission, the wave of epileptiform activity propagates across area CA1. These findings suggest, that non-synaptic mechanisms may play a role in the generation and spread of epileptiform activity in the mammalian CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...