Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 333 (1986), S. 393-399 
    ISSN: 1432-1912
    Keywords: Enteric neurons ; Mucosal transport ; Noradrenaline ; Somatostatin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Noradrenaline (NA) and somatostatin (SOM) stimulate intestinal water and ion absorption and are found in mucosal nerve fibres and nerve terminals in submucous ganglia of the guinea-pig small intestine. As the main projection of submucous neurons is to the mucosa, NA and SOM might alter mucosal transport either by a direct effect on the epithelium or indirectly, by affecting submucous neurons. In this study these two possible sites of action of NA and SOM have been investigated in mucosa-submucosa preparations of guinea-pig ileum. In addition, the actions of NA and SOM on the secretory responses caused by stimulation of different populations of submucous neurons have been studied. The stimulants of secretion used were a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 10−5 M), 5-hydroxytryptamine (5-HT, 10−7 M) and electrical field stimulation (EFS), which activate cholinergic, noncholinergic and mixed populations of submucous secretomotor neurons, respectively. Segments of intestine were dissected free of external muscle and myenteric plexus and mounted in Ussing chambers. Short-circuit current (I sc) was measured as an indication of net active ion transport across the tissue. NA (≥10−8 M) and SOM (〉10−10 M) each caused a decrease in I sc, indicating a net increase in ion absorption. The NA response was abolished and the magnitude of the SOM response was reduced to 20% by tetrodotoxin (10−7 M). DMPP, 5-HT and EFS each stimulated nerves that increased I sc and each of these responses was significantly diminished by NA and SOM; for both NA and SOM the decrease in the DMPP response was significantly greater than the decrease observed in the response to carbachol (10−6 M). Phentolamine (10−6 M) abolished all of the effects of NA but caused no change in the SOM effects. These studies have shown that NA and SOM cause similar changes in net ion transport, that their actions are primarily on submucous secretomotor neurons and that NA and SOM can diminish the responses to stimulation of both cholinergic and noncholinergic submucous neurons. In this tissue it is also known that SOM coexists with NA in noradrenergic nerve terminals in the submucosa. However, when applied together, NA and SOM caused no greater decrement in the carbachol and 5-HT responses than would be predicted by adding the separate effects of NA and SOM. Hence there was no obvious interaction between NA and SOM effects on mucosal transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0878
    Keywords: Key words: Major pelvic ganglion ; Tyrosine hydroxylase ; Vasoactive intestinal polypeptide ; Neuropeptide Y ; Synaptophysin ; Colon ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The pelvic ganglia are mixed ganglia containing both sympathetic and parasympathetic neurons that receive spinal input via the hypogastric (lumbar cord) and pelvic nerves (sacral cord), respectively. A recent study has utilised immunohistochemistry against synaptophysin (a protein associated with small vesicles) to visualise the preganglionic terminals in these ganglia. By selectively cutting the hypogastric or pelvic nerves and allowing subsequent terminal degeneration, the populations of parasympathetic and sympathetic preganglionic terminals, respectively, can be visualised. The present study has used this method in conjunction with retrograde labelling of pelvic neurons from the distal colon and double label immunofluorescence against tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) to identify and characterise the sympathetic and parasympathetic neurons projecting to the distal colon from the major pelvic ganglia of the male rat. Approximately equal numbers of distal colonic-projecting pelvic neurons are sympathetic and parasympathetic. Almost all noradrenergic neurons are sympathetic. Of the VIP neurons that project to the distal colon approximately one third are sympathetic, one third parasympathetic and the remaining third are possibly innervated by both the lumbar and sacral cord. Extrapolation from our results also suggests that the majority of non-noradrenergic neuropeptide Y neurons (which are known to comprise the remainder of the neurons) are parasympathetic. These studies have demonstrated that the pelvic ganglia are a major source of sympathetic innervation to the distal bowel and have further shown that the distal colon is another target for the non-noradrenergic sympathetic neurons of the pelvic ganglia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 237 (1984), S. 299-308 
    ISSN: 1432-0878
    Keywords: Somatostatin ; Somatostatin immunoreactivity ; Somatostatin-containing neurons ; Stomach ; Intestine small ; Intestine, large ; Man
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Somatostatin-immunoreactive nerves and endocrine cells were localized by use of immunohistochemistry in human stomach, small and large intestine. The nature of the immunoreactivity in acid extracts of separated layers of intestine was determined with separation by high pressure liquid chromatography followed by detection with radioimmunoassay; authentic somatostatin-14 was found in the external musculature, which contains nerves, and in the submucosa and mucosa, which contain both nerve fibres and endocrine cells. The distribution of somatostatin nerves in the gastric antrum, duodenum, jejunum, ileum, ascending and sigmoid colon, and rectum is described. In the intestine many positive perikarya and fine varicose fibres were seen. Mucosal fibres formed a sub-epithelial plexus and a looser network in the lamina propria; this nerve supply was less dense in the large intestine. Submucous ganglia contained positive perikarya and terminals; many terminals formed pericellular baskets, mainly around non-reactive cells. A small number of nerve fibres were associated with submucosal blood vessels. The innervation of the circular and longitudinal muscle was sparse. Positive nerve terminals were seen in the myenteric plexus, although fewer than in the submucous ganglia; positive perikarya were scarce in myenteric ganglia. Somatostatin-immunoreactive nerves were found in the muscle layers and myenteric plexus of the gastric antrum, but were not detected in the antral mucosa and all layers of the gastric body. The distribution of human enteric somatostatin nerves is compared to that in small laboratory animals, and possible roles for these nerves are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0878
    Keywords: Choline acetyltransferase ; Cholecystokinin ; Neuropeptide Y ; Somatostatin ; Substance P ; Intestine, small ; Submucous ganglia ; Guinea-pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The peptides cholecystokinin (CCK), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and vasoactive intestinal peptide (VIP), and the synthesizing enzyme for acetylcholine, choline acetyltransferase (ChAT) were localized immunohistochemically in nerve cell bodies of the submucous ganglia in the small intestine of the guinea-pig. VIP-like immunoreactivity was found in 45% of submucous neurons. ChAT immunoreactivity was observed in a separate group of nerve cells, which made up 54% of the total population. There were three subsets of neurons immunoreactive for ChAT: (1) ChAT neurons that also contained immunoreactivity for each of the peptides CCK, SOM and NPY, representing 29% of all submucous neurons; (2) ChAT neurons that also contained SP-like immunoreactivity, representing 11% of all submucous neurons, and (3) ChAT cells that did not contain any detectable amount of the peptides that were localized in this study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0878
    Keywords: Major pelvic ganglion ; Tyrosine hydroxylase ; Vasoactive intestinal polypeptide ; Neuropeptide Y ; Synaptophysin ; Colon ; Rat (Wistar)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The pelvic ganglia are mixed ganglia containing both sympathetic and parasympathetic neurons that receive spinal input via the hypogastric (lumbar cord) and pelvic nerves (sacral cord), respectively. A recent study has utilised immunohistochemistry against synaptophysin (a protein associated with small vesicles) to visualise the preganglionic terminals in these ganglia. By selectively cutting the hypogastric or pelvic nerves and allowing subsequent terminal degeneration, the populations of parasympathetic and sympathetic preganglionic terminals, respectively, can be visualised. The present study has used this method in conjunction with retrograde labelling of pelvic neurons from the distal colon and double label immunofluorescence against tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) to identify and characterise the sympathetic and parasympathetic neurons projecting to the distal colon from the major pelvic ganglia of the male rat. Approximately equal numbers of distal colonic-projecting pelvic neurons are sympathetic and parasympathetic. Almost all noradrenergic neurons are sympathetic. Of the VIP neurons that project to the distal colon approximately one third are sympathetic, one third parasympathetic and the remaining third are possibly innervated by both the lumbar and sacral cord. Extrapolation from our results also suggests that the majority of non-noradrenergic neuropeptide Y neurons (which are known to comprise the remainder of the neurons) are parasympathetic. These studies have demonstrated that the pelvic ganglia are a major source of sympathetic innervation to the distal bowel and have further shown that the distal colon is another target for the non-noradrenergic sympathetic neurons of the pelvic ganglia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...