Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 165 (1985), S. 392-396 
    ISSN: 1432-2048
    Keywords: Salt tolerance ; Osmotic adjustment ; Turgor ; Suaeda (salt tolerance)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Osmotic potentials and individual epidermal cell turgor pressures were measured in the leaves of seedlings of Suaeda maritima growing over a range of salinities. Leaf osmotic potentials were lower (more negative) the higher the salt concentration of the solution and were lowest in the youngest leaves and stem apices, producing a gradient of osmotic potential towards the apex of the plant. Epidermal cell turgor pressures were of the order of 0.25 to 0.3 MPa in the youngest leaves measured, decreasing to under 0.05 MPa for the oldest leaves. This pattern of turgor pressure was largely unaffected by external salinity. Calculation of leaf water potential indicated that the gradient between young leaves and the external medium was not altered by salinity, but with older leaves, however, this gradient diminished from being the same as that for young leaves in the absence of NaCl, to under 30% of this value at 400 mM NaCl. These results are discussed in relation to the growth response of S. maritima.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 182 (1990), S. 199-203 
    ISSN: 1432-2048
    Keywords: Cell volume ; Pressure probe ; Tradescantia (cell volume) ; Triticum (cell volume)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A method is described for estimating volume in higher-plant cells from their behaviour under pressure probe. The method utilises differences between initial and final equilibrium turgor pressures associated with a pressure-relaxation experiment. The validity of the approach is tested using model parameters, and by comparing cell volumes obtained using the method with those estimated from direct visual inspection of the same cells. The range of practical application is limited by certain cell parameters, especially osmotic pressure. Nevertheless the method will be useful for many types of higher-plant cell, particularly those of irregular shape or those that are deeply embedded within plant tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...