Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 88 (1994), S. 97-101 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; T. speltoides ; Meiotic chromosome pairing ; Alien transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 618-626 
    ISSN: 1432-2242
    Keywords: Comparative maps ; Deletion lines ; Molecular-tagged chromosome regions (MTCRs) ; Triticum aestivum ; Hordeum vulgare
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2242
    Keywords: Key words Fluorescence in situ hybridization ; Translocation ; WSMV resistance ; Thinopyrum intermedium ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   Thinopyrum intermedium is a promising source of resistance to wheat streak mosaic virus (WSMV), a devastating disease of wheat. Three wheat germplasm lines possessing resistance to WSMV, derived from Triticum aestivum×Th. intermedium crosses, are analyzed by C-banding and genomic in situ hybridization (GISH) to determine the amount and location of alien chromatin in the transfer lines. Line CI15092 was confirmed as a disomic substitution line in which wheat chromosome 4A was replaced by Th. intermedium chromosome 4Ai?2. The other two lines, CI17766 and A29-13-3, carry an identical Robertsonian translocation chromosome in which the complete short arm of chromosome 4Ai?2 was transferred to the long arm of wheat chromosome 4A. Fluorescence in situ hybridization (FISH) using ABD genomic DNA from wheat as a probe and S genomic DNA from Pseudoroegneria stipifolia as the blocker, and vice versa, revealed that the entire short arm of the translocation was derived from the short arm of chromosome 4Ai?2 and the breakpoint was located at the centromere. Chromosomal arm ratios (L/S) of 2.12 in CI17766 and 2.15 in A29-13-3 showed that the translocated chromosome is submetacentric. This translocated chromosome is designated as T4AL ⋅ 4Ai?2S as suggested by Friebe et al. (1991).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Key words Aegilops tauschii ; Triticum aestivum ; Genetic mapping ; Molecular markers ; Agronomically important genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Aegilops tauschii is the diploid D-genome progenitor of bread wheat (Triticum aestivum L. em Thell, 2n=6x=42, AABBDD). A genetic linkage map of the Ae. tauschii genome was constructed, composed of 546 loci. One hundred and thirty two loci (24%) gave distorted segregation ratios. Sixty nine probes (13%) detected multiple copies in the genome. One hundred and twenty three of the 157 markers shared between the Ae. tauschii genetic and T. aestivum physical maps were colinear. The discrepancy in the order of five markers on the Ae. tauschii 3DS genetic map versus the T. aestivum 3D physical map indicated a possible inversion. Further work is needed to verify the discrepancies in the order of markers on the 4D, 5D and 7D Ae. tauschii genetic maps versus the physical and genetic maps of T. aestivum. Using common markers, 164 agronomically important genes were assigned to specific regions on Ae. tauschii linkage, and T. aestivum physical, maps. This information may be useful for map-based cloning and marker-assisted plant breeding.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 66 (1983), S. 111-121 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Agropyron ; Intergeneric hybrids ; Embryo culture ; Chromosome pairing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Intergeneric hybrids of Triticum aestivum (2n=42,AABBDD) with Agropyron ciliare (2n= 28,SSYY), A. trachycaulum (2n=28,SSHH), A. yezoense (2n=28,SSYY) and A. scirpeum (2n=28) are reported for the first time. F1 hybrids of T. aestivum were also produced with A. intermedium (2n=42,E1E1E2E2Z1Z1) and A. junceum (2n=14,JuJu). All wheat-Agropyron hybrids were obtained by embryo rescue technique. Cultivars and reciprocal crosses differed for seed set, seed development and F1 plant production. The F1 hybrids were sterile. Attempts to obtain amphiploids were unsuccessful. However, backcross derivatives were obtained with wheat as the recurrent parent. The level of chromosome pairing in A. trachycaulum x wheat, A. yezoense x wheat and wheat x A. junceum hybrids provided no evidence of homologous or homoeologous pairing. Mean pairing frequencies in A. ciliare x wheat, wheat x A. scirpeum and wheat x A. intermedium hybrids indicated homoeologous or autosyndetic pairing. Ph gene was more effective in regulating homoeologous pairing in A. yezoense x wheat hybrids than in A. ciliare x wheat hybrid. Chromosome pairing data of BC1 derivatives indicated that either some of the wheat chromosomes were eliminated or Agropyron chromosomes caused reduced pairing of wheat homologues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 78 (1989), S. 625-632 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Tissue culture ; Callus ; Monosomic analysis ; Regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ability of immature embryos of wheat (Triticum aestivum L.) to respond in cell culture was examined in crosses between the ‘Wichita’ monosomic series and a highly regenerable line, ‘ND7532’. Segregation in disomic controls and 13 monosomic families showed a good fit to a monogenic ratio indicating a qualitative mode of inheritance. Segregation in the cross involving monosomic 2D showed a high frequency of regeneration (93.6%) and high callus growth rate (1.87 g/90 days) indicating that 2D is a critical chromosome. Modifying genes may be located on other chromosomes. Substitution of chromosomes from a low regenerable cultivar ‘Vona’ further indicated that the group 2 chromosomes, in particular chromosome 2D, possess genetic factors promoting callus growth and regeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 780-782 
    ISSN: 1432-2242
    Keywords: Physical mapping ; RFLP ; Cereals ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cytologically based physical maps for the group 3 chromosomes of wheat were constructed by mapping 25 Triticum aestivum deletion lines with 29 T. tauschii and T. aestivum RFLP probes. The deletion lines divide chromosomes 3A, 3B, and 3D into 31 discrete intervals, of which 18 were tagged by marker loci. The comparison of the consensus physical map with a consensus RFLP linkage map of the group 3 chromosomes of wheat revealed a fairly even distribution of marker loci on the long arm, and higher recombination in the distal region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Triticum timopheevii ; Triticum aestivum ; Chromosome substitution ; C-banding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Whether the two tetraploid wheat species, the well known Triticum turgidum L. (macaroni wheat, AABB genomes) and the obscure T. timopheevii Zhuk. (AtAtGG), have monophyletic or diphyletic origin from the same or different diploid species presents an interesting evolutionary problem. Moreover, T. timopheevii and its wild form T. araraticum are an important genetic resource for macaroni and bread-wheat improvement. To study these objectives, the substitution and genetic compensation abilities of individual T. timopheevii chromosomes for missing chromosomes of T. aestivum ‘Chinese Spring’ (AABBDD) were analyzed. ‘Chinese Spring’ aneuploids (nullisomic-tetrasomics) were crossed with a T. timopheevii x Aegilops tauschii amphiploid to isolate T. timopheevii chromosomes in a monosomic condition. The F1 hybrids were backcrossed one to four times to Chinese Spring aneuploids without selection for the T. timopheevii chromosome of interest. While spontaneous substitutions involving all At- and G-genome chromosomes were identified, the targeted T. timopheevii chromosome was not always recovered. Lines with spontaneous substitutions from T. timopheevii were chosen for further backcrossing. Six T. timopheevii chromosome substitutions were isolated: 6At (6A), 2G (2B), 3G (3B), 4G (4B), 5G (5B) and 6G (6B). The substitution lines had normal morphology and fertility. The 6At of T. timopheevii was involved in a translocation with chromosome 1G, resulting in the transfer of the group-1 gliadin locus to 6At. Chromosome 2G substituted for 2B at a frequency higher than expected and may carry putative homoeoalleles of gametocidal genes present on group-2 chromosomes of several alien species. Our data indicate a common origin for tetraploid wheat species, but from separate hybridization events because of the presence of a different spectrum of intergenomic translocations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2242
    Keywords: C-banding ; Genomic in situ hybridization ; Triticum aestivum ; T. umbellulatum ; Chromosome addition and translocation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A standard karyotype and a generalized idiogram of Triticum umbellulatum (syn. Aegilops umbellulata, 2n = 2x = 14) was established based on C-banding analysis of ten accessions of different geographic origin and individual T. umbellulatum chromosomes in T. aestivum — T. umbellulatum chromosome addition lines. Monosomic (MA) and disomic (DA) T. aestivum — T. umbellulatum chromosome addition lines (DA1U = B, DA2U = D, MA4U = F, DA5U = C, DA6U = A, DA7U = E = G) and telosomic addition lines (DA1US, DA1UL, DA2US, DA2UL, DA4UL, MA5US, (+ iso 5US), DA5UL, DA7US, DA7UL) were analyzed. Line H was established as a disomic addition line for the translocated wheat — T. umbellulatum chromosome T2DS·4US. Radiation-induced wheat — T. umbellulatum translocation lines resistant to leaf rust (Lr9) were identified as T40 = T6BL·6BS-6UL, T41 = T4BL·4BS-6UL, T44 = T2DS·2DL-6UL, T47 = ‘Transfer’ = T6BS·6BL-6UL and T52 = T7BL·7BS-6UL. Breakpoints and sizes of the transferred T. umbellulatum segments in these translocations were determined by in situ hybridization analysis using total genomic T. umbellulatum DNA as a probe
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5060
    Keywords: embryogenesis ; wheat ; maize ; Triticum aestivum ; Zea mays ; haploidy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Embryogenesis was analyzed in wheat × maize hybrids using paraffin sectioning. Embryogenesis in wheat × maize hybrids is different from that in self-pollinated wheat plants. Development of the embryo is not accompanied by the formation of an endosperm. The endosperm nuclei remain free in the cytoplasm, fail to advance into the cellular stage, and degenerate at a later time. The antipodal cells quickly degenerate in the fertilized ovaries of wheat × maize hybrids similar to self-pollinated ovaries. The antipodal cells remain normal in unpollinated ovaries. The pre-embryo will abort if it is allowed to develop on the plant, because of a nutritional shortage in the absence of an endosperm. Therefore, embryo rescue is necessary for haploid production from a wheat × maize hybrids. Haploid polyembryos were obtained from spikelet culture of wheat × maize hybrids. The formation of polyembryos is due to the cleavage of the pre-embryo and the effect of 2,4-D. The frequency of haploid embryo production and plant regeneration is affected significantly by maize genotypes, but not by wheat genotypes. The concentration of 2,4-D affects only the size of the embryo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...