Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 10 (1994), S. 308-312 
    ISSN: 1573-0972
    Keywords: Cadmium ; copper ; phosphate ; shock loading ; total organic carbon ; toxicity ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The effect of shock-loading of zinc, copper and cadmium ions on the removal of total organic carbon (TOC) and phosphate in an anaerobic-aerobic activated sludge process was investigated. TOC removal was not sensitive to shock-loading of Zn2+ and Cd2+ ions, and complete removal was achieved even at 20 mg Zn2+/l and 20 mg Cd2+/l. However, with over 1 mg Cu2+/1 TOC removal efficiency decreased. PO inf4 sup3- removal, in contrast, was extremely sensitive to these metal ions, with the threshold being 1 mg Zn2+/l and 1 mg Cd2+/l. Higher concentrations adversely affected PO inf4 sup3- removal. Copper again proved detrimental; no PO inf4 sup3- removal was achieved even at 1 mg Cu/l. These results highlight the sensitivity of the removal efficiencies of TOC and PO inf4 sup3- to shock loadings of these heavy metals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 445-455 
    ISSN: 0006-3592
    Keywords: synergism antagonism ; metal uptake ; Chlorella vulgaris ; cadmium ; zinc ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Many microorganisms are capable of sequestering and concentrating heavy metals from their aqueous environment. While much research has beep carried out on the uptake of single species of metal ions, little attention seems to have been given to the study of multimetal ion systems. A mathematical model has previously been developed to describe the uptake of individual metal species by a microorganism. The model proposes two sequential processes: an initial rapid uptake due to cellular surface adsorption and a subsequent slow uptake due to membrane transport of the metal into the cells. This article extends the treatment by considering the uptake of two metal species together, cadmium and zinc, under different experimental conditions. The results are discussed in terms of possible mechanistic interactions.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...