Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 130-138 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Analysis of Doppler-shifted Balmer-α line emission from the Tokamak Fusion Test Reactor's (TFTR) neutral beam injection systems has revealed that the line shape, which is a direct measure of the velocity distribution function, is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the wide-divergence part of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e-divergence of 1.3° (based on fits to the beam shape on the calorimeter), the wide part has a divergence of 6.9°. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9°. Up to now, most fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the two Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An additional factor in determining the power density at the surface of beam absorbers is the angle at which the particles arrive. Angles are different for particles emitted from different locations on the ion source. To treat this situation, the average angle of incidence is calculated. For beam loss at the exit of the neutralizer, the average angle of incidence is 2.2°, rather than the 4.95° subtended by the center of the ion source. This average angle of incidence is found to be a function of beam divergence. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Energy flow within TFTR neutral beamlines is measured with a waterflow calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source on the well-instrumented test stand, 99.5±3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12°, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations in the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...