Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 60 (1989), S. 3730-3733 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Both the Tokamak Fusion Test Reactor and the Joint European Torus, two large magnetic confinement fusion devices, will use high-powered tritium beams. The suggestion has been made that tritium consumption could be reduced if tritium is only fed into the plasma source and deuterium or hydrogen is used as the neutralization target by operating with deuterium or hydrogen fed independently into the neutralizer. We report on measurements we performed with deuterium and hydrogen, and of the beam contamination that occurs in such an operating mode.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Data from an E(parallel)B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutralizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarily due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3%–8% peak to peak. The effects of both phenomena on the injected neutral beam can be ameliorated by careful operation of the ion sources.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Energy flow within TFTR neutral beamlines is measured with a waterflow calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source on the well-instrumented test stand, 99.5±3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12°, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations in the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Results are given from the first comprehensive and complementary measurements using the final production U.S. Common Long Pulse Ion Sources mounted on both the TFTR neutral beam test beamline and the TFTR neutral beam injection system, with actual tokamak experimental conditions, power systems, controls, and operating methods. The set of diagnostics included water calorimetry, thermocouples, vacuum ionization gauges, photodiodes, neutron, gamma-ray, and charged particle spectroscopy, optical multichannel analysis, charge exchange spectroscopy, Rutherford backscatter spectroscopy, and implantation/secondary ion mass spectroscopy. These systems were used to perform complementary measurements of neutral beam species, impurities, spatial divergence, energy dispersion, pressure, and reionization. The measurements were performed either in the neutralizer region, where the beam contained both ions and neutrals, or in the region of the output neutral beam. The average of the neutral particle ratios in the range from 80 to 114 keV is D0[E]:D0[E/2]:D0[E/3]=53(5):27(4):20(4), where the quantities in parentheses are the average experimental uncertainties.The corresponding neutral power ratio is P0[E]:P0[E/2]:P0[E/3]=72(9):19(3):9(2). The half widths (1/e) in the horizontal plane for the full-, half-, and third-energy components were 0.26°, 0.34°, and 0.42°, respectively. The dispersions of the full-, half-, and third-energy components were 1.20 keV, 2.35 keV, and 2.26 keV, respectively. The carbon impurity concentration in a 80 keV D0 beam was not greater than 2×10−4 per D0 beam particle, and exhibited an apparent acceleration state of C+. The oxygen impurity concentration was less than 5×10−4 per D0 beam particle, and exhibited an apparent acceleration state of O+. A variety of vacuum conditions were observed depending on the operating conditions. Typically, pressures in the transition ducts were in the range from 0.3 to 0.7×10−5 Torr at the beginning of injection pulses, and reionized power losses were in the range from 0.75% to 1.5% of incident power. At the end of injection pulses, pressures in the transition ducts were in the range from 0.6 to 2×10−5 Torr and reionized power losses were in the range from 2% to 6% of incident power. This work describes generic results, new apparatus, and advances in measurement techniques for the optimization of tokamak neutral beam heating operations and the analysis of neutral beam heated plasmas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ohmic plasma size scans have been carried out in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)] to measure the influence of the major radius upon energy confinement. The major radius, minor radius, and aspect ratio were varied over wide ranges (R=2.08–3.2 m, a=0.4–0.9 m, and R/a=2.9–8.0) at constant qc. The energy confinement determined from kinetic diagnostics varies strongly with major radius. The data set is less well suited to determine minor radius scaling, but it appears to be distinctly weaker than the major radius scaling. The anomaly in ion thermal conductivity over neoclassical predictions appears to decline with increasing aspect ratio, which is a better ordering parameter for the magnitude of the anomaly than either the minor radius or the major radius. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 596-600 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Large area 10×40-cm Lawrence Berkeley Laboratory "field-free'' ion sources were used during the first 2.5 yr of the neutral beam injection heating experiment on the tokamak fusion test reactor. Although these ion sources were located inside magnetic shielding structures, interference from tokamak magnetic fields prevented beam operation under certain conditions when using hydrogen. The fields causing this interference have been studied, and modifications which allow operation of such sources in these fields have been made.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low-recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≈χi〉χe. Recent measurements have confirmed similar behavior in broad-density L-mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test-particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked-density TFTR "supershots'' with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In high-temperature, peaked-density plasmas the observed gradient scale length parameter ηtoti=d ln Ti/d ln ne correlates reasonably well with predictions of the threshold for exciting ion-temperature-gradient-driven turbulence (ITGDT), as would be expected for plasmas at marginal stability with respect to this strong transport mechanism. In L-mode plasmas where ITGDT is expected to be too weak to enforce marginal stability, ηtoti exceeds this threshold considerably. However, preliminary experiments have failed to observe a significant increase in ion heat transport when ηtoti was rapidly forced above ηc (the threshold for exciting ITGDT) using a perturbative particle source, as would have been expected for a plasma at marginal stability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Five diagnostic systems were used for initial species measurements during tokamak fusion test reactor (TFTR) neutral beam test stand operations involving four ion sources, as well as several different configurations and operating conditions. Initial results were obtained for total neutral species fractions at the beamline input and the beamline output, differential radial profiles of species fractions, angular divergences of species components, species radial power density profiles, and beam impurity components for various conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 130-138 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Analysis of Doppler-shifted Balmer-α line emission from the Tokamak Fusion Test Reactor's (TFTR) neutral beam injection systems has revealed that the line shape, which is a direct measure of the velocity distribution function, is well approximated by the sum of two Gaussians, or, alternatively, by a Lorentzian. For the sum of two Gaussians, the wide-divergence part of the distribution contains 40% of the beam power and has a divergence five times that of the narrow part. Assuming a narrow 1/e-divergence of 1.3° (based on fits to the beam shape on the calorimeter), the wide part has a divergence of 6.9°. The entire line shape is also well approximated by a Lorentzian with a half-maximum divergence of 0.9°. Up to now, most fusion neutral beam modelers have assumed a single Gaussian velocity distribution, at the extraction plane, in each direction perpendicular to beam propagation. This predicts a beam transmission efficiency from the ion source to the calorimeter of 97%. Waterflow calorimetry data, however, yield a transmission efficiency of ∼75%, a value in rough agreement with predictions of the two Gaussian or Lorentzian models presented here. The broad wing of the two Gaussian distribution also accurately predicts the loss in the neutralizer. An additional factor in determining the power density at the surface of beam absorbers is the angle at which the particles arrive. Angles are different for particles emitted from different locations on the ion source. To treat this situation, the average angle of incidence is calculated. For beam loss at the exit of the neutralizer, the average angle of incidence is 2.2°, rather than the 4.95° subtended by the center of the ion source. This average angle of incidence is found to be a function of beam divergence. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 64 (1993), S. 2729-2736 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Tokamak Fusion Test Reactor (TFTR) deuterium neutral beams have been operated unintentionally with significant quantities of extracted water ions. Water has been observed with an optical multichannel analyzer. These leaks were thermally induced with the contamination level increasing linearly with pulse length. Up to 6% of the beam current was attributed to water ions, corresponding to an instantaneous value of 12% at the end of a 1.5 s pulse. A similar contamination is observed during initial operation of ion sources exposed to air. Operation of new ion sources typically produces a contamination level of ∼2%, with cleanup to undetectable levels in 50–100 beam pulses. Approximately 90% of the water extracted from ion sources with water leaks was deuterated, implying that there is the potential for tritiated water production during TFTR's forthcoming DT operation. It is concluded that isotope exchange in the plasma generator takes place rapidly, most likely as the result of surface catalysis. The primary concern is with O implanted into beam absorbers recombining with tritium, and the subsequent retention of T2O on cryopanels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...