Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of medicinal chemistry 11 (1968), S. 1265-1268 
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 41 (1949), S. 1079-1081 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 14 (1922), S. 279-279 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 3 (1964), S. 201-206 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 3714-3725 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Lattice mismatch in epitaxial layered heterostructures with small characteristic lengths induces large, spatially nonuniform strains. The components of the strain tensor have been shown experimentally to affect the electronic properties of semiconductor structures. Here, a technique is presented for calculating the influence of strain on electronic properties. First, the linear elastic strain in a quantum dot or wire is determined by a finite element calculation. A strain-induced potential field that shifts and couples the valence subbands in the structure is then determined from deformation potential theory. The time-independent Schrödinger equation, including the nonuniform strain-induced potential and a potential due to the heterostructure layers, is then solved, also by means of the finite element method. The solution consists of the wave functions and energies of states confined to the active region of the structure; these are the features which govern the electronic and transport properties of devices. As examples, two SixGe1−x submicron resonant tunneling devices, a quantum wire with two-dimensional confinement and a quantum dot with three-dimensional confinement, are analyzed. Experimentally measured resonant tunneling current peaks corresponding to the valence subbands in the material are modeled by generating densities of confined states in the structures. Size and composition-dependent strain effects are examined for both devices. In both the quantum dot and the quantum wire, the strain effects on the wave functions and energies of confined states are evident in the calculated densities of confined states in the structures, which are found to be consistent with experimentally measured tunneling current/voltage curves for resonant tunneling diodes. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 59 (1986), S. 4011-4016 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The ion irradiation stability of the CsCl phases CoAl, IrAl, SiRu, and AuZn has been investigated. Thin-film (∼500-A(ring)-thick) transmission electron microscopy samples were irradiated with Xe to a maximum dose of 4×1015 ions/cm2 at room temperature. Irradiation-induced transformations in the compound samples were examined by transmission electron diffraction. The alloys CoAl, IrAl, and AuZn remained crystalline while SiRu became amorphous. Analysis of our findings and other previously reported experimental results indicate that CsCl compound stability under ion irradiation is strongly correlated with atomic mobilities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 66 (1989), S. 513-519 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The ion beam mixing of Al and Ti by 600 keV Xe ions was studied at room temperature and near 80 K. In view of recent observations of large differences between bilayer and multilayer mixing rates in the Fe-Ti, Ni-Ti, and Cu-Ti systems, both bilayer and buried-layer samples were investigated. Results obtained with the various sample configurations were in good mutual agreement. Comparison to literature data on marker experiments in Al suggested no significant dependence on layer thickness above ∼5 A(ring). At room temperature, the mixing rate is in excellent agreement with previous multilayer mixing experiments. The initial mixing rate was found to vary by less than 20% between 80 and 300 K. The results are discussed in terms of theoretical models for the mixing mechanisms together with published data on comparable systems. In spite of the low Z values involved, the mixing rate is in good agreement with an expression based on a thermal spike mechanism. At large fluences, a 1260-A(ring)-thick surface layer of Al would suddenly start to degrade quite rapidly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 6081-6090 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A combined analytical and computational model is developed to study the mechanics of strained epitaxial island growth in typical semiconductor systems. Under certain growth conditions in systems with a film/substrate lattice mismatch, deposited material is known to aggregate into islandlike shapes with geometries having arc shaped cross-sections. A two-dimensional model assuming linear elastic behavior is used to analyze an isolated arc shaped island with elastic properties similar to those of the substrate. The substrate is assumed to be much larger than the island. Finite element analysis shows that in order to minimize the total energy, which consists of strain energy, surface energy, and film/substrate interface energy, a coherent island will adopt a particular height-to-width aspect ratio that is a function of only the island volume. It is then shown that for an island with volume greater than a certain critical size, the inclusion of a mismatch strain relieving edge dislocation is favorable. The criterion for the critical size is based on a comparison of the configurational forces acting on the edge of the island in the presence of an edge dislocation. Finally, a finite element calculation combined with an analytical treatment of the singular dislocation fields is used to determine the minimum energy island aspect ratio for the dislocated island/substrate system. The combination of the minimum energy morphology studies for the coherent and dislocated systems with the dislocation nucleation criterion gives a complete model for strained epitaxial island growth which can serve as a basis for interpretation of experiments. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 68 (1990), S. 1364-1366 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Low temperature ion beam mixing rates for Cu-Ti, Ni-Ti, and Fe-Ti layers have been found to be significantly lower than predicted by a popular semi-empirical thermal spike model. It has been proposed that the unavoidable hydrogen contamination of the as-deposited Ti films may have reduced the mixing rates, but the measurement of even lower mixing rates for Fe-V and Fe-Co bilayers shows the discrepancy to be more fundamental. Still, a systematic dependence on heat of mixing suggests that some sort of diffusional (thermal spike?) mechanism is involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...