Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 21 (1974), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Piston cores 7 m and 6.5 m long were collected from Lakes Zug and Zurich respectively. Radiocarbon age determinations, pollen assemblage zones and varve counts indicate dates of 5000–6000 years B.P. (Zug), and 12,000–13,000 years B.P. (Zurich) for the base of the cores. Declination of the magnetic remanence varies through 70° and inclination varies through 30°. Although the correlation with the geomagnetic secular variation curve covering the last 15,000 years as determined from Lake Windermere, England (Creer et al., 1972) is not precise, the results suggest that Lake Zug and Lake Zurich sediments have been recording the broad outline of past secular variations of the earth's magnetic field. Since intensity of magnetization and susceptibility correlate markedly with lithology, a detailed sediment stratigraphy is presented. The amount and texture of the detrital input appears to be a controlling factor for the natural magnetic remanence. Intensity varies from 90 μG in zones of organic, sulphide pigmentation and those with ultra-fine laminations to 0.8 μG in impure lacustrine chalk. Susceptibility ranges from 9 μG/Oe in laminated, fine-grained glacially derived muds to 0.5 μG/Oe in impure lacustrine chalk. Intensity of magnetization also varies systematically within individual turbidites with lowest values in the coarse-grained, basal fractions. Slumped beds were identified on the basis of erratic anomalies in magnetic declination and inclination measurements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Recent studies of the Greenland ice cores have offered many insights into Holocene climatic dynamics at decadal to century timescales. Despite the abundance of continental records of Holocene climate, few have sufficient chronological control and sampling resolution to compare with the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Inst. and Methods in Physics Research, B 5 (1984), S. 389-393 
    ISSN: 0168-583X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0495
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Lake Zürich occupies a glacially overdeepened perialpine trough in the northern Middlelands of Switzerland. A total of 154.4 m of Quaternary sediments and 47.3 m of Tertiary Molasse bedrock has been cored from the deepest part of the lake, some 10 km south of the city of Zürich. Some 16.8 m of gravels and sands directly overlying the bedrock include basal till and probably earliest subglacial fluvial and lacustrine deposits. These are overlain by 98.6 m of fine-grained, glacial-aged sediments comprising completely deformed proglacial and/or subglacial lacustrine muds, separated by four basal mud tills. The lack of interglacial sediments, fossils, and other datable material, and the presence of severe sediment deformation and unknown amounts of erosion prevent the establishment of an exact chronostratigraphy for sediments older than the upper mud till. Above it some 8.6 m of lacustrine muds were deposited, folded, faulted, and tilted during the final opening of the lake at about 17,500–17,000 years ago. Superimposed are 30.4 m of final Würm and post-glacial sediments comprising (from oldest): cyclic proglacial mud, thick-bedded and laminated mud, a complex transition zone, laminated carbonate, laminated marl, and diatom-calcite varves. These sediments reflect changing catchment and lacustrine conditions including: glacial proximity, catchment stability, lake inflow characteristics, thermal structure, chemistry, and bed stability. Average sedimentation rates ranged from 11 cm yr−1 immediately after glacier withdrawal, to as low as 0.4 mm yr−1 as the environment stabilized. The lack of coarse outwash deposits separating the fine-grained glaciolacustrine sediments from a corresponding underlying basal till suggests that deglaciation of the deep northern basin of Lake Zürich was by stagnation-zone retreat rather than by retreat of an active ice-front.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated. Radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years. A variety of approaches have been employed to collect data used in stratigraphic correlation and lake elevation interpretation; these include acoustic stratigraphy, sedimentologic analyses, mineralogy, geochemistry (major element, C, O and S isotopes, and organics), paleontology and pollen. The results indicate that prior to 32,000 year B.P. an ephemeral saline lake-playa system was present in the basin. The perennial lake, which has occupied the basin since this time, rose in a series of three major steps; the freshest water conditions and presumably highest altitude was reached at about 17,000 year B.P. The lake remained fresh for a brief period, followed by a rapid increase in salinity and sharp lowering in elevation to levels below that of the present Great Salt Lake. The lake remained at low elevations, and divided at times into a north and south Basin, until about 8,000 year B.P. Since that time, with the exception of two short rises to about 1290 m, the lake level has remained near the present elevation of 1280 m.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...