Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 1247-1251 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 and 50 ms depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: During the initial deuterium-tritium experiments on TFTR, neutron emission was measured with 235U and 238U fission chambers, silicon surface barrier diodes, spatially collimated 4He proportional counters and ZnS scintillators, and a variety of elemental activation foils. The activation foils, 4He counters, and silicon diodes can discriminate between 14 and 2.5 MeV neutrons. The other detectors respond to both DD and DT neutrons but are more sensitive to the latter. The proportional counters, scintillators, and some of the fission chambers were calibrated absolutely, using a 14 MeV neutron generator positioned at numerous locations inside the TFTR vacuum vessel. Although the directly calibrated systems were saturated during the highest-power deuterium-tritium operation, they allowed cross calibration of less sensitive fission chambers and silicon diodes. The estimated absolute accuracy of the uncertainty-weighted mean of these cross calibrations, combined with an independent calibration derived from activation foil determinations of total neutron yield, is ±7%. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: At JET the primary diagnostic for monitoring the neutron emission is a set of fission chambers. These are calibrated using the neutron activation technique. A second independent measurement of the neutron yield can be obtained from the neutron profile monitor. Both measurements depend on neutron transport calculations and at JET this has been done using the neutron transport code MCNP. The introduction of tritium into JET plasmas provided an opportunity to check the modeling by comparing the activation of different materials. The calculation of the neutron spectrum at a re-entrant irradiation position was found to be consistent with measurements and an accuracy of 〈7% in the neutron yield measurement was obtained. Neutron transport calculations of the effective collimator correction and attenuation for the profile monitor are also described. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 1137-1140 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015–1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 514-519 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Based upon JET experience, the measurement of multichannel collimated neutron fluxes and of the neutron spectrum gives time-dependent information on spatial profiles of neutron emission and alpha–particle birth, the total neutron emission (fuel burn-up rate), plasma position, effects of plasma instabilities, triton burn-up, ion temperature, and fuel densities. The design for a horizontally viewing neutron camera for ITER is based upon the prototype and upgrade versions of the JET neutron emission profile monitor and the JET spectrometers. It is proposed that vertically stacked modules are installed in the ITER biological shield in a fan shaped viewing geometry, aimed at a focal point located at the slit opening of a preshield designed to reduce the streaming neutron flux. Each module contains a pair of sight lines with adjustable collimation, allowing for multiple detector neutron flux monitoring and neutron spectroscopy over a wide operating range. The modular system allows flexibility in detector choice and viewing geometry. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We have examined the concept of a thin foil Faraday collector as a lost alpha particle detector capable of operating under ITER-like conditions. A prototype detector consisting of a single set of four 2.5 μm Ni foils was installed on the JET first wall and operated during a variety of deuterium plasma conditions during the 1995 JET run period. Although there was no significant production of alpha particles during these plasmas, the prototype demonstrated the expected resistance to the high temperature and x-ray backgrounds, as well as moderate neutron and gamma ray backgrounds characteristic of these plasmas. In addition, this prototype showed no significant response to neutral beam, rf, or lower hybrid plasma heating. The device did pick up a low level signal when neutral beams were injected simultaneously with heavy gas puffing. Strong intermittent correlations were seen with excursions in the Hα edge brightness signal. In addition, the detector produced a significant signal in response to a roughly 250 ms disruption precursor. A similar prototype detector was installed immediately outside the Tokamak Fusion Test Reactor vacuum vessel during the 1994 D–T run period to test the expected insensitivity to neutron backgrounds. No signal was seen above background during D–T plasmas for which the fast neutron production was in excess of 2×1018 n/s. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The JET neutron profile monitor was used to study the transport of tritium into a magnetically confined deuterium plasma. Trace amounts of tritium were introduced through a gas valve beyond the plasma edge into a variety of plasma confinement regimes. The d(t,n)α fusion cross section is two orders of magnitude greater than the d(d,n)3He cross section and so a puff of tritium which has a negligible effect on the plasma nevertheless produces a large d–t neutron signal. The profile monitor consists of two cameras each made up of a fan-shaped array of collimated lines of sight. It was used to measure the d–d and d–t neutron profiles simultaneously. This article describes the detection system, its operation and assesses the difficulties due to scattered neutrons. The profiles can be used to determine tritium density and transport coefficients. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 and 50 ms depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A variety of elemental foils have been activated by neutron fluence from the Tokamak Fusion Test Reactor under conditions with the DT neutron yield per shot ranging from 1012 to over 1018. Linear response over this large dynamic range is obtained by reducing the mass of the foils and increasing the cooling time, all while accepting greatly improved counting statistics. Effects on background gamma-ray lines from foil-capsule-material contaminants, and the resulting lower limits on activation foil mass, have been determined. DT neutron yields from dosimetry standard reactions on aluminum, chromium, iron, nickel, zirconium, and indium are in agreement within the ±9% (one-sigma) accuracy of the measurements; also agreeing are yields from silicon foils using the ACTL library cross section, while the ENDF/B-V library has too low a cross section. Use of the 115In(n,n')115mIn reaction (0.42 times as sensitive to DT neutrons as DD neutrons) in conjunction with pure-DT reactions allows a determination of the DT/(DD+DT) ratio in trace tritium or low-power tritium beam experiments. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 25 (1960), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...