Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The rat brain-derived neurotrophic factor (BDNF) gene consists of four short 5-exons linked to separate promoters and one 3′-exon encoding the mature BDNF protein. Using in situ hybridization we demonstrate here that kindling-induced seizures, cerebral ischaemia and insulin-induced hypoglycaemic coma increase BDNF mRNA levels through insult- and region-specific usage of three promoters within the BDNF gene. Both brief (2 min) and longer (10 min) periods of forebrain ischaemia induced significant and major increases only of exon III mRNA in the dentate gyrus. Following hypoglycaemic coma (1 and 30 min), exon III mRNA was markedly elevated in the dentate gyrus and, in addition, exon I mRNA showed a moderate increase. Single and recurrent (n= 40) hippocampal seizures significantly increased expression of exon I, II and III mRNAs in the dentate gyrus granule cells. After recurrent seizures, including generalized convulsions, there were also major increases of both exon I and III mRNAs in the CA3 region, amygdala, piriform cortex and neocortex, whereas in the hippocampal CA1 sector marked elevations were detected only for exon III mRNA. The insults had no effect on the level of exon IV mRNA in the brain. The region- and insult-specific pattern of promoter activation might be of importance for the effectiveness of protective responses as well as for the regulation of plastic changes following brain insults.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 5 (1993), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The neurotrophin gene family includes four structurally related proteins with neurotrophic activities. Two of them, nerve growth factor and brain-derived neurotrophic factor (BDNF), have been studied in detail and information has recently emerged on the expression and function of the third member, neurotrophin-3. In contrast, little information is available on neurotrophin-4 (NT-4), the most recently isolated member of this family. In this report we have used a sensitive RNAase protection assay to analyse the developmental expression of NT-4 mRNA in the rat brain and in 12 different rat peripheral organs. In heart, liver and muscle plus skin NT-4 mRNA levels were maximal at embryonic day (E) E13 (the earliest time point tested), with reduced levels at later times of development. In lung, kidney and thymus similar levels were seen from E13 to postnatal day (P) 1, with reduced levels in the adult. In testis, ovary and salivary gland NT-4 mRNA was detected at E16 with a peak shortly after birth. During brain development, NT-4 mRNA was maximal at E13 followed by a decrease around birth, after which the level increased. The postnatal increase of NT-4 mRNA was also seen in cerebral cortex and brain stem analysed separately, while in the hippocampus similar levels were found from P1 to adulthood. NT-4 mRNA was detected in all ten adult rat brain regions analysed with only small regional variations, being highest in pons–medulla, hypothalamus, thalamus and cerebellum. Adult rat thymus, thyroid, muscle, lung and ovary contained higher levels of NT-4 mRNA than brain, while all other adult tissues showed similar or lower levels than in the brain. The highest level of NT-4 mRNA overall was found in P1 testis. For comparison, BDNF mRNA was analysed in the same tissues. The expression of BDNF mRNA was in many cases different from that of NT-4 mRNA. The peak of NT-4 mRNA expression in several of the peripheral tissues coincided with the peak of naturally occurring neuronal cell death in peripheral ganglia. This is consistent with the possibility that NT-4 acts as a target-derived trophic factor in vivo. The widespread and increased expression of NT-4 mRNA during postnatal brain development could reflect a trophic role of NT-4 for central nervous system neurons. However, non-neuronal functions of NT-4 are also possible, particularly in male and female reproductive tissues, where the NT-4 protein could function as a growth factor for immature germ cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...