Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 53 (1988), S. 2546-2548 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report measurements by deep level transient spectroscopy of electron emission from the deep donor level (DX center) in Si-doped GaAs and AlxGa1−xAs of very low Al content. For the first time, discrete emission rates corresponding to different local configurations of Ga and Al atoms around the Si donor are resolved. The large change in emission kinetics previously observed between GaAs and AlxGa1−xAs (x≥0.14) is thus shown to arise from the local alloy disorder which is absent in GaAs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 56 (1990), S. 2102-2104 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The kinetics for the thermal emission of electrons from DX levels are shown to be exponential in heavily Si-doped GaAs. Isothermal voltage transients, obtained at constant capacitance, show a perfect exponential behavior. In contrast, a clear deviation from a single exponential function is observed when the transients are recorded at constant voltage, due to the nonuniform doping profile in these structures. The exponential emission kinetics seen in GaAs support the proposal that nonexponential emission kinetics observed at constant capacitance in AlxGa1−xAs are due to different emission rates for DX levels having different local atomic configurations in the alloy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 63 (1988), S. 1541-1548 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have measured the generation-recombination noise from the donor-related DX centers in current biased GaAs/AlxGa1−xAs heterostructures from 1 Hz to 25 kHz and from 77 to 330 K. A significant noise contribution from these traps is observed even at Al mole fractions below 0.2, where the trap level is resonant with the conduction band. The activated behavior of the noise spectrum from this resonant level is very similar to that observed at higher Al mole fractions, when the level lies deep in the fundamental gap. This result can be predicted, based on the recently elucidated relationship of the trap level to the band structure of AlxGa1−xAs. In accordance with other experimental results, the noise spectra demonstrate that the emission and capture kinetics of the level are unperturbed by its resonance with the conduction band. We briefly discuss some implications of these results for heterostructure transistor design.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 57 (1985), S. 1214-1238 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron heating in silicon dioxide (SiO2) at electric fields (approximately-less-than)5 MV/cm is demonstrated using three different experimental techniques: carrier separation, electroluminescence, and vacuum emission. Gradual heating of the electronic carrier distribution is demonstrated for fields from 5 to 12 MV/cm with the average excess energy of the distribution reaching (approximately-greater-than)4 eV with respect to the bottom of the SiO2 conduction band edge. Off-stoichiometric SiO2 (OS-SiO2) layers are shown to behave similarly to very thin SiO2((approximately-less-than)70 A(ring) in thickness) with a transition occurring from "cool'' to "hot'' electrons as the conduction mechanism changes from direct tunneling between silicon (Si) islands in the SiO2 matrix of the OS-SiO2 material to Fowler-Nordheim emission into the conduction band of the SiO2 regions. The relationship of electron heating to electron trapping, positive charge generation, interface state creation, and dielectric breakdown is treated. The importance of various scattering mechanisms for stabilizing the electronic field-induced heating in the SiO2 and preventing current runaway and impact ionization is discussed. Scattering may be due to disorder, trapped charges, and acoustical phonons, as well as longitudinal optical phonons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...