Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5044
    Keywords: Ajmalicine ; bioreactor ; Catharanthus roseus ; growth model ; scale-up
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 525-534 
    ISSN: 0006-3592
    Keywords: glucose ; osmotic pressure ; ajmalicine production ; catharanthus roseus ; kinetic model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The role of glucose in ajmalicine production by Catharanthus roseus was investigated in the second stage of a two-stage batch process. Activities of tryptophan decar-boxylate (TDC) and anthranilate synthase (AS), two enzymes In the pathway leading to ajmalicine, were higher after induction with 40 g/L glucose than after induction with 60 or 80 g/L glucose. Experiments with different media containing mixtures of glucose and the nonpermeating osmotic agent xylose, and using an already induced culture as inoculum, revealed that a minimum amount of glucose is required to support ajmalicine production after enzyme induction. This requirement was not an osmotic effect. The relation between the glucose concentration and the specific ajmalicine production rate, qp, was investigated in seven (fed-)batch cultures with constant glucose concentrations: 23, 29, 35, 53, 57, 75, and 98 g/L. In the cultures with a low glucose concentration (23, 29, and 35 g/L) the qp was 2.7-times higher than the cultures with 53 and 57 g/L, and almost six times higher than the cultures with a high glucose concentration (75 and 98 g/L). A glucose perturbation experiment (from 53 to 32 g/L) demonstrated that the ajmalicine production rate was adjusted without much delay. A kinetic equation is proposed for the relationship between the glucose concentration and qp. Differences in enzyme induction and ajmalicine production at different glucose levels could not be explained by the intracellular concentrations of glucose, fructose, sucrose, or starch. © 1995 John Wiley & Sons Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 435-439 
    ISSN: 0006-3592
    Keywords: Catharanthus roseus ; ajmalicine production rate ; dissolved oxygen concentration ; kinetic model ; high-density culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The relation between dissolved oxygen (DO) and the ajmalicine production rate of Catharanthus roseus was investigated in 15-L tank reactors at constant stirrer speed and gas flow rate. Below a DO concentration of 29% of air saturation the ajmalicine production rate was less than 0.06 μmol/g/d. Above a DO of 43% the ajmalicine production rate was constant at 0.21 μmol/g/d. Between a DO of 29% and 43% there was a strong relation between the ajmalicine production rate and the DO concentration. After a period of at least 12 days at DO ≤29% the culture lacked the ability to adapt to a DO ≥57%. A kinetic equation is proposed for the relation between DO and the specific ajmalicine production rate. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3592
    Keywords: Catharanthus roseus ; ajmalicine production ; enzyme activities ; dissolved oxygen ; nutrients concentration ; high density culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Oxygen and nutrient limitation was investigated in order to identify the origin of a lower specific ajmalicine production in Catharanthus roseus cultures at high cell densities in an induction medium. The effect of oxygen limitation was explored by comparing two identically aerated and agitated high cell density bioreactor cultures with dissolved oxygen (DO) concentration of 15% and 85% of air saturation, with respect to alkaloid formation and related enzymes activities. Oxygen had an evident effect on ajmalicine production: in the high DO cultures production was more than 5 times higher than in the low DO cultures. The difference in ajmalicine production between high and low DO could not be explained by the enzyme activity profiles. Moreover, the productivity in the high density culture could not restored to the level of a low density culture (at a high DO) by increasing the DO alone. The effect of nutrient limitation was studied with response surface methodology in shake flask cultures. Nutrient limitation could not be demonstrated to be responsible for the productivity loss. Alkaloid and enzyme measurements in the shake flask cultures supported previous findings that the tryptamine pathway may regulate alkaloid production, provided that the terpenoid pathway is sufficiently active. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3592
    Keywords: ajmalicine ; Catharanthus roseus ; alkaloid formation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The link between the growth stage and the production stage in a two-stage batch process was investigated using (filtered) inocula from different periods of the stationary phase of the growth cycle. In the production stage, ajmalicine production by Catharanthus roseus in a 3-L stirred tank reactor was induced with a high glucose concentration (80 g/L). Ajmalicine production in cultures started with cells from the late stationary phase was five times higher than in cultures started with cells from the early stationary phase. After transfer to the production stage, cells from the early stationary phase showed a transient increase in respiration and enzyme induction, followed by culture browning. In contrast, cells in the late stationary phase showed a typical induction pattern: constant respiration, and permanent enzyme induction. A striking similarity between the geraniol-10-hydroxylase (G10H) activity and the ajmalicine accumulation profile could be observed in all cultures, suggesting that G 10H regulated ajmalicine production in this investigation. The intracellular nitrate concentration was significantly higher in the inoculum showing a high ajmalicine production than in the inoculum with a low production. Consequently, nitrate may act as a marker for the start of the production stage: as soon as the nitrate is depleted in the growth medium secondary metabolism can be induced. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 88-99 
    ISSN: 0006-3592
    Keywords: biofilm structure ; detachment ; abrasion ; collisions ; airlift-reactor ; hydrodynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The detachment of biomass from suspended biofilm pellets in three-phase internal loop airlift reactors was investigated under nongrowth conditions and in the presence of bare carrier particles. In different sets of experiments, the concentrations of biofilm pellets and bare carrier particles were varied independently. Gas hold-up, bubble size, and general flow pattern were strongly influenced by changes in volume fractions of biofilm pellets and bare carrier particles. In spite of this, the rate of biomass detachment was found to be linear with both the concentration of biofilm pellets and the bare carrier concentration up to a solids hold-up of 30%. This implies that the detachment rate was dominated by collisions between biofilm pellets and bare carrier particles. These collisions caused an on-going abrasion of the biofilm pellets, leading to a reduction in pellet volume. Breakage of the biofilm pellets was negligible. The biofilm pellets were essentially ellipsoidal, which made three-dimensional size determination necessary. Calculating particle volumes from two-dimensional image analysis measurements and assuming a spherical shape led to serious errors. The abrasion rate was not equal on all sides of the biofilm pellets, resulting in an increasing flattening of the pellets. This flattening was oriented with the basalt carrier inside the biofilm and independent of the absolute abrasion rate. These observations suggest that the collisions causing abrasion are somehow oriented. The internal structure of the biofilms showed two layers, a cell-dense outer layer and an interior with a low biomass density. Taking this density gradient into account, the washout of detached biomass matched observed changes in volume of the biofilm pellets. No gradient in biofilm strength with biofilm depth was indicated. © 1997 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...