Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: 195 tritium ion source shots were injected into Tokamak Fusion Test Reactor (TFTR) high power plasmas during December 1993–March 1994. In addition, four highly diagnosed pulses were fired into the calorimeter. Analysis of the Doppler shifted Tα emission of the beam in the neutralizer has revealed that the extracted ion compositions for deuterium and tritium are indistinguishable: 0.72±0.04 D+; 0.22±0.02 D+2; 0.07±0.01 D+3 compared to 0.72±0.04 T+; 0.23±0.02 T+2; 0.05±0.01 T+3. The resultant tritium full-energy neutral fraction is higher than for deuterium due to the increased neutralization efficiency at lower velocity. To conserve tritium, it was used only for injection and a few calorimeter test shots, never for ion source conditioning. When used, the gas species were switched to tritium only for the shot in question. This resulted in an approximately 2% deuterium contamination of the tritium beam and vice versa for the first deuterium pulse following tritium. Data from the calorimeter shots indicate that tritium contamination of the deuterium beam cleans up in five to six beam pulses, and is reduced to immeasurable quantities prior to deuterium beam injection. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 64 (1993), S. 2729-2736 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Tokamak Fusion Test Reactor (TFTR) deuterium neutral beams have been operated unintentionally with significant quantities of extracted water ions. Water has been observed with an optical multichannel analyzer. These leaks were thermally induced with the contamination level increasing linearly with pulse length. Up to 6% of the beam current was attributed to water ions, corresponding to an instantaneous value of 12% at the end of a 1.5 s pulse. A similar contamination is observed during initial operation of ion sources exposed to air. Operation of new ion sources typically produces a contamination level of ∼2%, with cleanup to undetectable levels in 50–100 beam pulses. Approximately 90% of the water extracted from ion sources with water leaks was deuterated, implying that there is the potential for tritiated water production during TFTR's forthcoming DT operation. It is concluded that isotope exchange in the plasma generator takes place rapidly, most likely as the result of surface catalysis. The primary concern is with O implanted into beam absorbers recombining with tritium, and the subsequent retention of T2O on cryopanels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 596-600 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Large area 10×40-cm Lawrence Berkeley Laboratory "field-free'' ion sources were used during the first 2.5 yr of the neutral beam injection heating experiment on the tokamak fusion test reactor. Although these ion sources were located inside magnetic shielding structures, interference from tokamak magnetic fields prevented beam operation under certain conditions when using hydrogen. The fields causing this interference have been studied, and modifications which allow operation of such sources in these fields have been made.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: TFTR long pulse ion sources have been operated with gas fed only into the neutralizer. Gas for the plasma generator entered through the accelerator rather than directly into the arc chamber. This modification has been proposed for tritium beam operation to locate control electronics at ground potential and to simplify tritium plumbing. Source operation with this configuration and with the nominal gas system that feeds gas into both the ion source and the center of the neutralizer are compared. Comparison is based upon accelerator grid currents, beam composition, and neutral power delivered to the calorimeter. Charge exchange in the accelerator can be a significant loss mechanism in both systems at high throughput. A suitable operating point with the proposed system was found that requires 30% less gas than used presently. The extracted D+, D+2, and D+3 fractions of the beam were found to be a function of the gas throughput; at similar throughputs, the two gas feed systems produced similar extracted ion fractions. Operation at the proposed gas efficient point results in a small reduction (relative to the old high throughput mode) in the extracted D+ fraction of the beam from 77% to 71%, with concomitant changes in the D+2 fraction from 18% to 26%, and 6% to 3% for D+3. The injected power is unchanged, ∼2.2 MW at 95 kV.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...