Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: GABA is synthesized by glutamate decarboxylase (GAD), which has two forms, GAD65 and GAD67. To elucidate the molecular mechanisms of mouse GAD65 (mGAD65) gene expression, we isolated and characterized the mGAD65 gene. The mGAD65 gene was found to be divided into 16 exons and spread over 75 kb. The sequence of the first exon and the 5′-flanking region indicated the presence of potential neuron-specific cis-regulatory elements. We used transgenic mice to examine the expression pattern conferred by a 9.2-kb promoter-proximal DNA fragment of the mGAD65 gene fused to the bacterial lacZ reporter gene. Transgenic mice showed high β-galactosidase activity specifically in brain and testis. They also showed characteristic patterns of transgene expression in olfactory bulb, cerebellar cortex, and spinal cord, a similar expression pattern to that of endogenous mGAD65. However, no transgene expression was observed in the ventral thalamus or hypothalamus, in which high mGAD65 gene expression levels have been observed. These results suggest that the 9.2-kb DNA fragment of the mGAD65 gene is associated with its tissue-specific expression and its targeted expression in GABAergic neurons of specific brain regions but that additional regulatory elements are necessary to obtain fully correct expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 30 (1991), S. 6908-6916 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 21 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The dorsal lateral geniculate nucleus (dLGN), the major thalamic station of the visual pathway, contains a fairly large number of dopaminergic terminals, and dopamine was found to reduce spontaneous and visually evoked activity in the dLGN in vivo. The cellular basis of this influence remained unknown. Here we have used whole cell patch-clamp techniques to analyse the effects of dopamine (DA) on GABAergic transmission in dLGN slices of juvenile postnatal day (P) 12–P24 Long–Evans rats or juvenile (P12–P22) GAD67-GFP (Δneo) mice. Spontaneous inhibitory postsynaptic currents (sIPSCs) were increased in frequency by the D2-like agonist quinpirole (QUIN) in rat (n = 6), as well as in mouse (n = 5) thalamic slices. This effect was blocked in the presence of the D2-like antagonist sulpiride (SULP, n = 5) and was absent in the ventrobasal complex (VB) of rat (n = 7) and mouse (n = 4) thalamus, which is devoid of GABAergic interneurons. Direct recordings from labelled GABAergic neurons in the dLGN of GAD67-GFP mice revealed a QUIN-mediated membrane depolarization (n = 12), which was attenuated by SULP (n = 6). These data demonstrate that DA through activation of D2-like receptors in GABAergic interneurons induces an increase in inhibitory interactions most likely at F2 dendrodendritic terminals, thereby providing a cellular correlate of the observation made in vivo that DA predominantly acts through inhibition of relay cell activity in the dLGN.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 21 (2005), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Activity plays important roles in the formation and maturation of synaptic connections. We examined these roles using solitary neocortical excitatory neurons, receiving only self-generated synaptic inputs, cultured in a microisland with and without spontaneous spike activity. The amplitude of excitatory postsynaptic currents (EPSCs), evoked by applying brief depolarizing voltage pulses to the cell soma, continued to increase from 7 to 14 days in culture. Short-term depression of EPSCs in response to paired-pulse or 10-train-pulse stimulation decreased with time in culture. These developmental changes were prevented when neurons were cultured in a solution containing tetrodotoxin (TTX). The number of functional synapses estimated by recycled synaptic vesicles with FM4-64 was significantly smaller in TTX-treated than control neurons. However, the miniature EPSC amplitude remained unchanged during development, irrespective of activity. Transmitter release probability, assessed by use-dependent blockade of N-methyl-d-aspartate receptor-mediated EPSCs with MK-801, was higher in TTX-treated than control neurons. Therefore, the activity-dependent increase in EPSC amplitude was mainly ascribed to the increase in synapse number, while activity-dependent alleviation of short-term depression was mostly ascribed to the decrease in release probability. The effect of activity blockade on short-term depression, but not EPSC amplitude, was reversed after 4 days of TTX removal, indicating that synapse number and release probability are controlled by activity in very different ways. These results demonstrate that activity regulates the conversion of immature synapses transmitting low-frequency input signals preferentially to mature synapses transmitting both low- and high-frequency signals effectively, which may be necessary for information processing in mature cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: γ-Aminobutyric acid (GABA)ergic neurons in the neocortex have been mainly regarded as interneurons and thought to provide local interactions. Recently, however, glutamate decarboxylase (GAD) immunocytochemistry combined with retrograde labeling experiments revealed the existence of GABAergic projection neurons in the neocortex. We further studied the network of GABAergic projection neurons in the neocortex by using GAD67-green fluorescent protein (GFP) knock-in mice for retrograde labeling and a novel neocortical GABAergic neuron labeling method for axon tracing. Many GFP-positive neurons were retrogradely labeled after Fast Blue injection into the primary somatosensory, motor and visual cortices. These neurons were labeled not only around the injection site, but also at a long distance from the injection site. Of the retrogradely labeled GABAergic neurons remote from the injection sites, the vast majority (91%) exhibited somatostatin immunoreactivity, and were preferentially distributed in layer II, layer VI and in the white matter. In addition, most of GABAergic projection neurons were positive for neuropeptide Y (82%) and neuronal nitric oxide synthase (71%). We confirmed the long-range projections by tracing GFP-labeled GABAergic neurons with axon branches traveled rostro-caudally and medio-laterally. Axon branches could be traced up to 2 mm. Some (n = 2 of 4) were shown to cross the areal boundaries. The GABAergic projection neurons preferentially received neocortical inputs. From these results, we conclude that GABAergic projection neurons are distributed throughout the neocortex and are part of a corticocortical network.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Brain-derived neurotrophic factor (BDNF) acutely modulates synaptic transmission to excitatory neurons in hippocampus and neocortex. The question of whether BDNF acts similarly on excitatory synaptic transmission to GABAergic neurons was eluded in previous studies using cortical slices. To address this question, we used transgenic mice in which expression of green fluorescence protein (GFP) is regulated by glutamic acid decarboxylase 67 (GAD67) promoter. In cortical slices prepared from these GAD67-GFP knock-in mice, we could detect GABAergic neurons under a fluorescent microscope. An application of BDNF rapidly depressed excitatory postsynaptic currents (EPSCs) evoked by layer IV stimulation in most GFP-positive neurons in layer II/III of the cortex. This effect was seen at synapses activated during the BDNF application and blocked by anti-TrkB IgG, indicating that the acute inhibitory action of BDNF is activity-dependent and mediated through TrkB. Paired-pulse ratios of the amplitude of EPSCs to paired stimulation at intervals of 10–100 ms were not significantly changed after BDNF application, suggesting that the site of depression may be postsynaptic. Responses to directly applied glutamate were also depressed by BDNF in most of neurons, being consistent with the interpretation of postsynaptic action of BDNF. The depressive action of BDNF was blocked by an intracellular injection of a Ca2+ chelator, suggesting that a rise in Ca2+ is involved in the acute depression of EPSCs. This action of BDNF was seen in 67% of parvalbumin (PV)-positive neurons, but in only 19% of PV-negative neurons, indicating that the depressive action is biased to PV-positive GABAergic neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1912
    Keywords: Adrenal medulla ; Catecholamine secretion ; Conotoxin GIIIA ; Sodium channels ; Veratridine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Conotoxin GIIIA and GIIIB from the marine snail Conus geographus have been reported to inhibit voltage-dependent Na channels in skeletal muscle and postganglionic sympathetic neuron, but have no effect on Na channels in brain, giant axon and heart. In eel electroplax, conotoxins were also shown to share the common binding sites with saxitoxin (see review Gray et al. 1988). In bovine adrenal medullary cells, conotoxin GIIIA inhibited veratridine-induced influx of 22Na, 45Ca and secretion of catecholamines with an IC50 of 6 μmol/l, while saxitoxin suppressed veratridine-induced responses with an IC50 of 6.3 nmol/l. [3H]Saxitoxin binding to the cells was inhibited by unlabeled saxitoxin with an IC50 of 5.1 nmol/l, but was slightly reduced by 10 μmol/l conotoxin GIIIA. Conotoxin GIIIA, at 10 μmol/l, did not alter carbachol-induced influx of 22Na, 45Ca and secretion of catecholamines as well as high K-induced 45Ca influx and catecholamine secretion. These results indicate that conotoxin GIIIA, at concentrations 950 fold higher than saxitoxin, inhibits Na influx via voltage-dependent Na channels, but has no effect on the nicotinic receptor-ion channel complex or the voltage-dependent Ca channels. Conotoxin GIIIA seems to bind at the sites which are distinct from saxitoxin, but are functionally linked to the voltage-dependent Na channels. Conotoxins may be useful for the classification of Na channels in excitable cell membranes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 34 (1996), S. 109-116 
    ISSN: 1573-4927
    Keywords: aldehyde dehydrogenase ; isozyme ; transcriptional regulation ; tissue-dependent expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5′-promoter region of human, marmoset, and mouseALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5′-promoter region of the humanALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...