Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1364-6753
    Keywords: Key words Kcnab2 ; Bis1 ; K+ channel ; Epilepsy ; Mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: ABSTRACT¶We tested the hypothesis that Bis1, a gene involved in seizure regulation in mice which has been localized to the distal part of chromosome 4, was the same as the gene Kcnab2, encoding the β2-subunit for voltage-dependent K+ channels. Two facts suggested this hypothesis: Kcnab2 is located in the 3.1-cM confidence interval containing Bis1 and many studies have shown an involvement of K+ channels in the genesis of seizures. DNA sequence analysis of the coding sequence for Kcnab2 from JE/Le mice revealed no structural alterations which might affect Kcnab2 function. However, several nucleotide changes were observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The slow afterhyperpolarization that follows an action potential is generated by the activation of small-conductance calcium-activated potassium channels (SK channels). The slow afterhyperpolarization limits the firing frequency of repetitive action potentials (spike-frequency adaption) and is ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Key words Pore region ; P-loop ; K+ channel ; Ca2+-activated K+ channels ; Site-directed mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Structural determinants of permeation in large unit conductance calcium-activated potassium channels (BK channels) were investigated. Y293 and F294 in the P-region of dSlo were substituted by tryptophans. Compared to wild-type channels, Y293W channels displayed reduced inward unitary currents while F294W channels exhibited normal inward current amplitudes but flickery kinetics. Both mutations produced changes in current/voltage relations under bi-ionic conditions. Sensitivity to block by external tetraethylammonium (TEA) was affected in both channels, and the voltage dependence of TEA block was increased in F294W channels. Both mutations also affected gating by shifting the half-maximal activation voltage of macroscopic conductance/voltage relations to more positive potentials, and eliminating a slow component of deactivation. The double mutant did not produce ionic currents. These data are consistent with a model in which Y293 contributes to a potassium-binding site close to the outer mouth of the dSlo pore, while F294 contributes to an energy barrier near this site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words Inward-rectifier ; Polyamine block ; Spermine ; Heterooligomers ; IRK1 ; BIR10
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Activities of strong inward-rectifier K+ channels composed of Kir2.1(84 M), Kir2.1(84T) and Kir4.1 subunits and weak inward-rectifier K+ channels composed of Kir4.1(E158N) subunits were measured from giant inside-out patches of Xenopus laevis oocytes. The conductance/voltage (g/V) relationship for block by intracellular spermine (SPM) was biphasic for both Kir2.1 channel types while it was monophasic for both Kir4.1 channel types. The release of blocking Mg2+ ions was slow for Kir2.1(84T) but virtually instantaneous for Kir2.1(84M) and both Kir4.1 channel types. Coexpression of Kir2.1(84T) and Kir4.1(E158N) resulted in heterooligomeric channels which were strongly rectifying, with a g/V relationship for SPM-evoked block that was significantly different from that of either parental homooligomeric channel type. Block by intracellular Mg2+ was markedly stronger than that for Kir4.1(E158N) channels, while release of the block was almost instantaneous, similar to that for Kir4.1(E158N) channels. This suggests preferential formation of a particular heterooligomer such as was recently proposed for subunits within the Kir3.0 family.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Tetraethylammonium ; Potassium channel ; Calcium-activated channel ; Potassium ; Channel blockers ; Slowpoke ; Maxi-K channels
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Unitary currents were recorded from insideout membrane patches pulled from Xenopus oocytes that had been injected with RNA transcribed from a cDNA encoding the Drosophila maxi-K channel (Slowpoke). Site-directed mutagenesis was used to make cDNAs encoding channel subunits with single amino acid substitutions (Y308V and C309P). The extracellular side of the patch was exposed to tetraethylammonium (TEA) in the pipette solution; unitary currents in the presence of TEA were compared with currents in the absence of TEA to compute the inhibition. Amplitude distributions were fit by β functions to estimate the blocking and unblocking rate constants. For wild-type channels, TEA blocked with an apparent K d of 80 μM at 0 mV and sensed 0.18 of the membrane electric field; the voltage dependence lay entirely in the blocking rate constant. TEA blocked currents through C309P channels with a similar affinity to wild-type at 0 mV, but this was not voltage-dependent. Currents through Y308V channels were very insensitive to any block by TEA; the apparent K d at 0 mV was 26 mM and the blockade sensed 0.18 of the electric field. Oocytes injected with a mixture of RNAs encoding wild-type and Y308V channels showed unitary currents of four discrete amplitudes in the presence of 3 mM TEA; at 40 mV these corresponded to inhibitions of approximately 80%, 55%, 25% and 10%. These values agreed well with those expected for inhibition by TEA of currents through channels containing 3, 2, 1 and 0 tyrosine residues at the channel mouth, assuming that a tyrosine residue from each of four subunits contributes equally to the binding of the TEA ion. This indicates that Slowpoke channels form as tetramers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...