Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 39 (1986), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Among the microbial phototrophs, those belonging to the cyanobacteria utilize CO2 and HCO−3 for photosynthesis. Some Chlorophyceae mainly take up CO2 in photosynthesis, and others, which have carbonic anhydrase (CA) on their cell surface can utilize HCO−3 as well as CO2. Kinetic studies revealed that most of the HCO−3 is utilized after this ion is converted to CO2 via CA located on the cell surface. Therefore, the actual molecular species which crosses the plasmalemma is mostly free CO2. There is apparent variation in the mode of utilization of dissolved inorganic carbon (DIC) for photosynthesis in microalgae in other classes. The apparent Km(CO2) values for photosynthesis in most microalgae grown in ordinary air (low-CO2 cells) are as low as in terrestrial C4 plants, although the algal cells fix CO2 via the C3 pathway. In contrast, the apparent Km(CO2) values in cells grown on CO2-enriched air (high-CO2 cells) are as high as those in the terrestrial C3 plants. Most low-CO2 cells show low photorespiration; a low CO2 compensation point, low rates of glycolate excretion and no or low O2 inhibition of photosynthesis. These results indicate that the efficiency of DIC utilization for photosynthesis in low-CO2 cells is very high. The activity of CA in low-CO2 cells is higher than that in high-CO2 cells, while no difference has been confirmed in the activities of other photosynthetic enzymes between low- and high-CO2 cells. In addition, low-CO2 cells can accumulate large amounts of DIC internally, indicating the existence of CO2-concentrating mechanisms in these cells. When CA activity or CO2 concentrating ability is reduced by inhibitors or by mutation, the apparent Km(CO2) values for photosynthesis and the rate of photorespiration increased notably. These results indicate that the high efficiency of DIC utilization in low-CO2 cells depends on both CA and a CO2-concentrating mechanism. It is concluded that CA facilitates the diffusion of DIC from outside the cells to the site(s) of the carboxylation reaction and the concentration of DIC is achieved via an active transporter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: Chlamydomonas reinhardtii ; chromatic acclimation ; photosynthesis ; photosystem stoichiometry ; quantum yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The work addressed the adjustment of the photosystem ratio in the green algaChlamydomonas reinhardtii. It is shown that green algae, much like cyanophytes and higher plants, adjust and optimize the ratio of the two photosystems in chloroplasts in response to the quality of irradiance during growth. Such adjustments are compensation reactions and helpC. reinhardtii to retain a quantum efficiency of oxygen evolution near the theoretical maximum. Results show variable amounts of PS I and a fairly constant amount of PS II in chloroplasts and suggest that photosystem stoichiometry adjustments, occurring in response to the quality of irradiance during plant growth, are mainly an adjustment in the concentration of PS I. The work delineates chromatic effects on chlorophyll accumulation in the chloroplast ofC. reinhardtii from those pertaining to the regulation of the PS I/PS II ratio. The detection of the operation of a molecular feedback mechanism for the PS I/PS II ratio adjustment in green algae strengthens the notion of the highly conserved nature of this mechanism among probably all oxygen evolving photosynthetic organisms. Findings in this work are expected to serve as the basis of future biochemical and mutagenesis experiments for the elucidation of the photosystem ratio adjustment in oxygenic photosynthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: Cyanophytes ; P700 ; PS I/PS II stoichiometry ; PsaA/B polypeptides ; PsaC polypeptide ; PsbA polypeptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in composition of membrane proteins in Synechocystis PCC 6803 induced by the shift of light regime for photosynthetic growth were studied in relation to the regulation of PS I/PS II stoichiometry. Special attention was paid to the changes in abundance of proteins of PS I and PS II complexes. Composition was examined using a LDS-PAGE and a quantitative enzyme immunoassay. Abundance of PsaA/B polypeptides and the PsaC polypeptide of the PS I complex, on a per cell basis, increased under the light regime exciting preferentially PS II and decreased under the light regime exciting mainly PS I. Similar changes were observed with polypeptides of 18.5, 10 and 8.5 kDa. The abundance of other proteins associated with membranes, including PsbA polypeptide of the PS II complex, was fairly constant irrespective of light regime. These results are consistent with our previous observations with other strains of cyanophytes (Anabaena variabilis M2 and Synechocystis PCC 6714) that PS I is the variable component in changes in PS I/PS II stoichiometry in response to changing light regimes for photosynthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...