Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Fully noninductive, steady-state electron cyclotron current drive (ECCD) has been demonstrated for the first time in experiments carried out in the tokamak à configuration variable (TCV) [O. Sauter et al., Phys. Rev. Lett. 84, 3322 (2000)]. By appropriately distributing six 0.45 MW ECCD sources over the discharge cross section, fully noninductive, stable, and stationary plasmas with Ip up to 210 kA were obtained for the full discharge duration of 1.9 s, corresponding to more than 900 energy confinement times and more than 10 current redistribution times at an average current drive efficiency η20CD=0.01[1020 A W−1 m−2]. These experiments have also demonstrated for the first time the steady recharging of the ohmic transformer using ECCD only. The effect of localized off-axis electron cyclotron heating (ECH) and EC current drive (ECCD) (co- and counter-) is investigated showing that locally driven currents amounting to only 1% of Ip significantly alter sawtooth periods and crash amplitudes. An improved quasi-stationary core confinement regime, with little or no sawtooth activity, has been obtained by a combination of off-axis ECH and on-axis CNTR–ECCD. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the Tokamak à Configuration Variable (TCV), the central electron temperature obtained in discharges with counter (CNTR) electron cyclotron current drive (ECCD) is larger than with CO-ECCD or electron cyclotron resonance heating (ECRH) alone. Comparison of experimental results with calculations by the transport code PRETOR [IAEA Technical Conference on Advances in Simulation and Models of Thermonuclear Plasmas. Montreal 142 (International Atomic Energy Agency, Vienna 1992)] indicates that sawtooth stabilization is responsible for the increased confinement time and the attendant twofold enhancement of the central temperature. Sawtooth stabilization is caused in turn by the central safety factor q0 rising above 1 for CNTR-ECCD; by contrast, the simulation results show that q0〈1 in the sawtoothing CO-ECCD and ECRH cases. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 1224-1234 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using the standard approach of neoclassical theory, a set of relatively simple kinetic equations has been obtained, suited for an implementation in a numerical code to compute a related set of distribution functions. The transport coefficients are then expressed by simple integrals of these functions and they can be easily computed numerically. The code CQL3D [R. W. Harvey and M. G. McCoy, in Proceedings of IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1993), pp. 489–526], which uses the full collision operator and considers the realistic axisymmetric configuration of the magnetic surfaces, has been modified to solve the bounce-averaged version of these equations. The coefficients have then been computed for a wide variety of equilibrium parameters, high-lighting interesting features of the influence of geometry at small aspect ratio. Differences with the most recent formulas for the ion neoclassical heat conductivity are pointed out. A set of formulas, which fit the code results, is obtained to easily evaluate all the neoclassical transport coefficients in the banana regime, at all aspect ratios, in general axisymmetric equilibria. This work extends to all the other transport coefficients, at least in the banana regime, the work of Sauter et al. [O. Sauter, C. Angioni, and Y. R. Lin-Liu, Phys. Plasmas 6, 2834 (1999)] which evaluates the neoclassical conductivity and all the bootstrap current coefficients. Formulas for arbitrary collisionality regime are proposed, obtained combining our results for the banana regime with the results of Hinton and Hazeltine [F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976)], adapted for small aspect ratio. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3122-3122 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 2834-2839 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Expressions for the neoclassical resistivity and the bootstrap current coefficients in terms of aspect ratio and collisionality are widely used in simulating toroidal axisymmetric equilibria and transport evolution. The formulas used are in most cases based on works done 15–20 years ago, where the results have been obtained for large aspect ratio, small or very large collisionality, or with a reduced collision operator. The best expressions to date and to our knowledge are due to Hirshman [S. P. Hirshman, Phys. Fluids 31, 3150 (1988)] for arbitrary aspect ratio in the banana regime and Hinton–Hazeltine [F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976)] for large aspect ratio and arbitrary collisionality regime. A code solving the Fokker–Planck equation with the full collision operator and including the variation along the magnetic field line, coupled with the adjoint function formalism, has been used to calculate these coefficients in arbitrary equilibrium and collisionality regimes. The coefficients have been obtained for a wide variety of plasma and equilibrium parameters and a comprehensive set of formulas, which have been fitted to the code results within 5%, is proposed for evaluating the neoclassical conductivity and the bootstrap current coefficients. This extends previous works and also highlights inaccuracies in the previous formulas in this wide plasma parameter space. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...