Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The disruption of a typical filamentous fungus, a native strain of Neurospora sitophila, was studied using a glass bead mill of novel design (the Sulzer Annu Mill 01). Cell concentration (in the range of 2.5–5 g dry weight/L) had little influence on the disruption attained. Disruption increased with increasing rotor speed (1000 –4000 r.p.m.) and number of passes (up to six passes) through the Annu Mill. Disruption was observed to follow traditional first-order kinetics for bead mills possessing predominantly plug flow characteristics. It was concluded that in general the Annu Mill would be applicable for the disruption of filamentous organisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A native strain of Neurospora sitophila was disrupted using enzymatic pretreatment combined with mechanical disruption in order to facilitate recovery of constitutive cellulases. Exceptional disruption (approaching 100%) was achieved when the enzymatic pretreatment protocol was used prior to mechanical disruption at a low rotor speed via a new bead mill (the Annu Mill). Further, increased recovery of cellulases (ca. two-fold increases in cellulase activity per unit biomass) appears attainable when this disruption protocol is employed. The enzyme preparation employed was Zymolyase, which lyses the walls of viable fungi. Combined disruption of the mycelial biomass appears to provide a secondary source of cellulases from Neurospora sitophila in addition to the extracellular primary source derived from the filtered (unprocessed) fermentation broth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 46-56 
    ISSN: 0006-3592
    Keywords: enzymatic lysis ; homogenization, high-pressure ; Candida utilis ; cell wall disruption ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The enhancement of the overall disruption of a native strain of Candida utilis (ATCC 9226) was studied using a combination of two methods, namely, pretreatment in the form of partial enzymatic lysis by Zymolyase followed by mechanical disruption in a Microfluidizer high-pressure homogenizer. The cells were grown in both batch and continuous cultures to examine the effect of specific growth rate on disruption. Cell suspensions ranging in concentration from 7 to 120 g DW/L were disrupted with and without enzymatic pretreatment. For yeast grown in batch culture, final total disruption obtained using the combined protocol approached 95% with four passes at a pressure of 95 MPa, as compared with only 65% disruption using only mechanical homogenization. A modified model was developed to predict the fraction disrupted by the enzymatic pretreatment-mechanical homogenization two-stage process. Predicted disruptions agreed favorably with experimental observations (maximum deviation of 20%) over a wide range of operating conditions. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...