Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 1426-1429 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this article we present the experimental results for the pressure variation of the refractive index of sapphire up to 16 GPa, obtained with an interferometric method, using the diamond anvil cell. In the range of hydrostatic pressures, up to about 12 GPa, the analysis of the results with the classic Lorentz–Lorenz approach provides a nearly linear relation between polarizability (α) and volume, corresponding to a constant strain polarizability parameter. For pressures above 12 GPa, there is a substantial nonlinear deviation, associated with nonhydrostatic effects inside the diamond anvil cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 4316-4323 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Resistance heating of the gasket strip in a gem-anvil high pressure cell was successful in obtaining sample temperatures up to 1100 °C, under pressures up to 4.0 GPa. The heating capabilities, as well as the mechanical and chemical stability, of several different gasket strips (two Ni-based alloys, Ta, Pt/Rh, and a Re/Mo alloy) with different design shapes, and two different single-crystal anvil materials (diamond and cubic zirconia) were investigated. Two gasket-strip designs were found to provide optimum uniform heating conditions while decreasing the required current needed to achieve 1100 °C. Two anvil systems were investigated to reduce the temperature increase of the pressure cell body. Cubic zirconia anvils reduced the cell-body temperature to 100 °C at sample temperatures up to 1100 °C. However, zirconia anvils often failed during heating and almost always failed during cooling. Diamond anvils with cubic zirconia mounting plates also permitted temperatures up to 1100 °C to be reached without anvil failure. However, the cell-body temperature increased to 300 °C. A sealed vacuum-type chamber was employed to eliminate the problem with gasket and anvil oxidation. The optimized operating parameters reported here provide a routine method for high temperature-high pressure studies. The method was used to densify and sinter nanosize amorphous silicon nitride and γ-alumina powders at high temperatures and high pressures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 69 (1998), S. 237-243 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A modification of the one dimensional A(ring)ngström's method that employs photothermal radiometry has been used to determine the longitudinal thermal diffusivity of three thin long bars of chemical vapor deposited diamond. Long bar specimens permit us to use a simple one-dimensional treatment that employs a linear least squares fitting procedure on both magnitude and phase data as a function of position, provided that the condition for ignoring end effects is fulfilled. Any differences in diffusivities obtained from magnitude data and from phase data can be attributed to surface heat losses; the values of diffusivity obtained with the two types of data showed no significant difference. The diffusivities obtained agree reasonably well with the mean values calculated from measurements made by several other laboratories on the same specimens. The heat source was the beam of an argon-ion laser focused onto the specimen surface either with a cylindrical lens to form a line focus or with a spherical lens to form a point focus. The differences in diffusivities obtained when a line source was used and when a point source was used were not statistically significant. A theoretical calculation indicates that the measurements on the specimen were made sufficiently far from the heat source for the one-dimensional treatment to be valid whether the line source or the point source were used: either source is expected to give the same result as was observed experimentally. A point source is preferable because the optical configuration of the experiment is simpler and larger signals are obtainable. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...